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Single neurons carry out important sensory and motor functions
related to the larger networks in which they are embedded. Under-
standing the relationships between single-neuron spiking and network
activity is therefore of great importance and the latter can be readily
estimated from low-frequency brain signals known as local field
potentials (LFPs). In this work we examine a number of issues related
to the estimation of spike and LFP signals. We show that spike trains
and individual spikes contain power at the frequencies that are
typically thought to be exclusively related to LFPs, such that simple
frequency-domain filtering cannot be effectively used to separate the
two signals. Ground-truth simulations indicate that the commonly
used method of estimating the LFP signal by low-pass filtering the
raw voltage signal leads to artifactual correlations between spikes and
LFPs and that these correlations exert a powerful influence on popular
metrics of spike–LFP synchronization. Similar artifactual results were
seen in data obtained from electrophysiological recordings in ma-
caque visual cortex, when low-pass filtering was used to estimate LFP
signals. In contrast LFP tuning curves in response to sensory stimuli
do not appear to be affected by spike contamination, either in
simulations or in real data. To address the issue of spike contamina-
tion, we devised a novel Bayesian spike removal algorithm and
confirmed its effectiveness in simulations and by applying it to the
electrophysiological data. The algorithm, based on a rigorous math-
ematical framework, outperforms other methods of spike removal on
most metrics of spike–LFP correlations. Following application of this
spike removal algorithm, many of our electrophysiological recordings
continued to exhibit spike–LFP correlations, confirming previous
reports that such relationships are a genuine aspect of neuronal
activity. Overall, these results show that careful preprocessing is
necessary to remove spikes from LFP signals, but that when effective
spike removal is used, spike–LFP correlations can potentially yield
novel insights about brain function.

I N T R O D U C T I O N

Much of our mechanistic understanding of brain function
comes from extracellular recordings, which provide a direct
measure of electrical activity near the tip of the recording
electrode. The resulting voltage signal is composed of the
spikes emitted by one or more neurons and the local field
potentials (LFPs), which represent the total synaptic current in
the neuronal circuit from which the recordings are obtained.
Typically, the LFP is extracted by low-pass filtering the wide-
band voltage signal, whereas spikes are identified by high-pass
filtering, thresholding, and subsequent sorting. The possibility
of isolating both signals from the same electrode is of great
interest because it allows the experimenter to relate the re-

sponses of individual neurons to those of the larger-scale
circuits in which they are embedded.

Popular methods for studying spike–LFP relationships in the
time domain include the spike-triggered average (STA) of the
LFP, the spike-field coherence (SFC), spike–LFP phase-lock-
ing histograms, and the prediction of spike timing from LFP
features. These types of analysis have proven useful for infer-
ring the role of feedforward and feedback circuitry in functions
as diverse as perception, attention, memory, and motor control
(Andersen et al. 2004; Chalk et al. 2010; Destexhe et al. 1999;
Fries et al. 2008; Jacobs et al. 2007; Pesaran et al. 2002; Saleh
et al. 2010). Similar methods applied to the space domain
permit comparisons of single-neuron activity to columnar sys-
tems in the cortex (Nauhaus et al. 2008; Xing et al. 2009).
More generally, comparisons of spiking and LFP activity
facilitate comparison with other signals, such as blood oxygen-
ation level dependent (BOLD) and electroencephalographic
(EEG) activity, that can be obtained noninvasively (Goense
and Logothetis 2008).

Of course, before attempting to analyze the relationship
between two types of signals, one must ensure that they can be
estimated independently. LFP estimation often relies on the
fact that the frequency content of LFPs and individual spike
waveforms differ substantially, such that LFPs can be isolated
by simply low-pass filtering the voltage signal. However, to the
extent that the LFPs and spikes contain overlapping frequen-
cies, this approach will fail to completely separate the two
signals. The resulting spectral contamination is of particular
concern when estimating the causal relationships between
LFPs and spikes because contamination of one signal by the
other will result in spurious correlations. Spectral contamina-
tion is most problematic when spikes and LFPs are estimated
from the same electrode recordings, but it can also affect
recordings obtained from separate electrodes, particularly
when the corresponding spike density functions are highly
correlated. Although various algorithms for efficient removal
of spikes from LFPs have been proposed (David et al. 2010;
Galindo-Leon and Liu 2010), a systematic appraisal of the
consequences of this contamination in common analytical
settings has not yet been attempted.

In this work we use simulations to estimate the extent of the
spectral contamination of LFPs by individual spikes and spike
trains, under conditions similar to those of typical extracellular
recordings. We show that such contamination introduces arti-
factual spike–LFP relationships into many of the popular
time-domain metrics mentioned earlier. In particular, strong
spike–LFP coherence and spike-triggered LFPs can be ob-
tained from random combinations of spikes and LFPs, if the
former are not removed properly. We confirm these simulation
results with real recordings from the primate visual system.
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To address the issues associated with spike contamination
we develop a novel Bayesian method that estimates veridical
LFPs by removing action potential signatures from raw voltage
signals. We show that application of this method to both
simulations and real data has a substantial impact on measures
of the relationships between spikes and LFPs. We also test two
other spike removal methods and show that the Bayesian
algorithm performs better in most cases. Overall, these results
show that the way in which electrode signals are processed can
significantly affect the conclusions drawn about the nature of
spikes, LFPs, and interactions between these two signals.

M E T H O D S

Electrophysiological recordings

EXPERIMENTAL SETUP. Two rhesus macaque monkeys took part in
the experiments. Both underwent a sterile surgical procedure to
implant a headpost and recording cylinder and, after recovery, mon-
keys were seated comfortably in a primate chair (Crist Instruments)
and trained to fixate a small spot on a computer monitor in return for
a liquid reward. Eye position was monitored at 200 Hz with an
infrared camera (SR Research) and required to be within 3° of the
fixation point for the reward to be dispensed. Recordings were
obtained from well-isolated single units in areas MT/V5 and V6, both
of which were identified based on anatomical magnetic resonance
imaging scans and the physiological properties of the neurons (Fattori
et al. 2009; Maunsell and Newsome 1987). All aspects of the exper-
iments were approved by the Animal Care Committee of the Montreal
Neurological Institute and were conducted in compliance with regu-
lations established by the Canadian Council of Animal Care.

PROCEDURE AND VISUAL STIMULI. On each trial, the animal ac-
quired fixation, after which the stimulus appeared and remained
stationary for 200 ms. The stimulus then moved at a constant direction
and speed for 500 ms. Stimuli were displayed at 85 Hz at a resolution
of 1,920 � 1,200 pixels and the viewing area subtended 70 � 42° of
visual angle at a distance of 42 cm. Stimuli consisted of sinusoidal
gratings of optimal spatiotemporal frequency or random-dot patches
displayed on a gray background (luminance of 70.3 cd/m2). Stimulus
size was optimized for each cell. Motion direction was sampled in 30°
steps and each stimulus was repeated five times in blockwise random
order.

Signal processing

Electrophysiological signals were recorded with a standard data
acquisition system (Plexon Multichannel Acquisition Processor
[MAP] System). Specifications of this system typically include a
dedicated low-pass filter for LFP signals (four-pole high cut at 170
Hz) followed by digitization at 1 kHz. As we show in the following
text, this type of filtering invariably introduces spurious correlations
into measures of spike–LFP coherence. We therefore obtained custom
hardware modifications to the MAP system that included wideband
analog filters (two-pole high cut at 2.5 kHz) and a higher digitization
rate (10 kHz). These modifications allowed us to detect spectral
contamination of the LFPs by spikes; subsequent spike sorting and
LFP analysis were performed through off-line digital filtering.

To remove line noise at 60 Hz, we assumed that the underlying
signal had equal power in a small range of frequencies around 60 Hz
and filtered the signal so that the power at 60 Hz was similar to that
of surrounding frequencies. We transformed the wideband signal into
the Fourier domain and minimized the squared error between the
absolute value of the Fourier coefficients between 55 and 65 Hz and
the function

a exp(�b� f � f0�c) � d (1)

Here f is frequency, f0 is the peak frequency (nominally 60 Hz), a is
the height of the 60 Hz peak, b controls its width, c adjusts the shape
of the peak, and d is the baseline frequency content. This functional
form provides a parsimonious parameterization of the frequency
content around 60 Hz. We then corrected the 60 Hz artifact by filtering
the signal in the Fourier domain with the function’s inverse

d

a exp(�b� f � f0�c) � d
(2)

The power spectrum of the corrected signal showed no apparent
discontinuity around 60 Hz, in contrast to a simpler notch filter. A
similar operation was performed around 180 Hz.

Simulations

To assess the likely contribution of spectral contamination to
various measures of spike–LFP coherence, we analyzed a signal that,
by construction, contained no temporal relationship between spikes
and LFPs. This composite signal was obtained by taking the frequency
content of the wideband signal obtained from our electrophysiological
recordings, after removing the spikes using the spike removal algorithm
presented in the following text, and shuffling the phases (Fig. 1A). To this
signal we added back waveforms taken at random from the original
electrophysiological signal, preserving the timing of each spike while
scaling the waveforms to achieve a desired signal-to-noise ratio
(SNR). To obtain reliable estimates of the underlying spike wave-
forms, we first selected typical waveforms that were within 3SDs of
the mean waveform at all times. We then projected this ensemble of
waveforms onto their first five principal components, obtaining a bank
of denoised waveforms. To achieve a desired mean firing rate, Poisson
distributed spurious spikes were added to the signal.

The LFP components of this signal thus had the same amplitude
spectra as those of a real neural signal, but lacked any consistent
relationship between spike times and LFP phases. Consequently, any
apparent relationship between the two signals would necessarily be
artifactual.

Data analysis

In an initial preprocessing step, we corrected the phase distortions
introduced by analog filters by filtering the wideband signal backward
in time with a digital Bessel filter that closely modeled the phase
response of the analog filters used in the preamplifier (Nelson et al.
2008). We then filtered the wideband signal with digital filters similar
to those used conventionally to estimate LFPs. The filters used were
a fourth-order 170-Hz low-pass causal Butterworth filter (digital
version of the filter used on the Plexon PreAmp separation for the LFP
board) and a fourth-order two-pass Butterworth (same filter with zero
phase delay). Filtering was implemented with Matlab software (The
MathWorks).

For some analyses, we divided the LFP frequency spectrum into the
following bands, similar to those used in previous studies (Khawaja et
al. 2009; Ray et al. 2008): � (4–8 Hz), � (8–12 Hz), � (16–24 Hz),
low � (25–55 Hz), and high � (65–140 Hz). Since the �, �, and �
bands did not show significant spike contamination in any of our
metrics, in both simulations and real data, for reasons of compactness
we combined all three bands into a single “low-frequency” band
(4–24 Hz).

Spike detection and sorting based on the high-pass filtered wide-
band signal were performed off-line using established methods (Qui-
roga et al. 2004). These results were compared for consistency with
results from Plexon’s Off-line Sorter software, which uses spike
waveforms sampled at 40 kHz. Spike timing information was consid-
ered accurate if agreement between the results of the two spike sorting
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methods was above a criterion level of 95%; otherwise, the sorting
parameters were altered until the agreement exceeded the criterion. In
three cases where this level could not be reached, the data were
rejected from further analysis.

SNRs were computed for each isolated unit as the peak-to-trough
voltage of the mean spike waveform, divided by the square root of the
mean power of the complete raw signal. We obtained the STA of the
LFP by averaging local field potentials centered around the time of
spikes (Dayan and Abbot 2001). We subsequently filtered the LFP
with complex Morlet wavelets and used the magnitude of the coeffi-
cients as an estimate of the instantaneous power of the LFP at given
frequencies (Goupillaud et al. 1984). We averaged the magnitude of
the coefficients around the time of spikes, normalized by the average
magnitude of the coefficients of the whole LFP signal, to obtain a
normalized wavelet STA, which can reveal transient increases or
decreases in the magnitude of oscillations at given frequencies around
the time of spikes.

To test whether spikes preferred certain phases of the LFP, the
instantaneous phase and amplitude of the LFP at 35 different frequen-
cies (log spaced from 4 to 150 Hz) were first calculated with the
Hilbert transform of different filtered versions of an LFP recording. A
single phase value was then assigned at each frequency for every
spike in a recording (Jacobs et al. 2007). By convention, a phase value
of 180° corresponds to the positive (hyperpolarizing) peak of the
cycle. Finally, histograms of the distributions of spike phase for
different LFP frequencies across all spikes were compiled; 50 phase
bins, ranging from 0 to 360° were used. The uniformity of the
distribution of spike phase values for our frequency ranges was
assessed for each case, using the Rayleigh statistical test, corrected for
the number of frequency ranges (Rutishauser et al. 2010). A cell was

considered phase-locked at a specific frequency range if the null
hypothesis of uniformity of the phase distribution could be rejected at
a corrected P � 0.01.

Spike-field coherence (SFC) was calculated as the power spectrum
of the LFP STA divided pointwise by the sum of the power spectra of
all LFP segments used to compute the STA (Fries et al. 2001). This
measure can reveal phase-locking at high frequencies that is otherwise
obscured in the STA of the LFP by low-frequency noise. A value of
1 at a given frequency of the SFC means that all spikes appear at the
same phase for this frequency, whereas a value of 0 indicates no
consistent relationship between the phase of the LFP at a given
frequency and spikes.

Tuning curves were quantified for single units (spike count) and
LFPs (normalized LFP band power), in the three frequency bands
described earlier. We used Morlet wavelets to measure the instanta-
neous power at different frequencies of the LFP across time, as in the
wavelet STA analysis. LFP tuning curves were derived by normaliz-
ing the mean magnitude of the Morlet coefficients over a time period
that spanned 100–500 ms after the onset of stimulus motion against
that in a baseline period consisting of 150 ms of spontaneous activity
before the stimulus presentation. Average tuning vectors for each
band were also computed for both single units and LFPs.

Spike removal algorithm

The purpose of the algorithm is to estimate the local field potential
based on a measured wideband voltage trace of length n. We assume
that this wideband signal y is the superposition of a low-frequency
local field potential w, high-frequency spike components �k, an offset
�, and white noise � (Fig. 1B).
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FIG. 1. Block diagrams of the ground-
truth simulations and the spike removal al-
gorithm. A: block diagram of the procedure
followed in our simulations to create a com-
posite signal. This signal is generated by
randomizing the phase of raw signals re-
corded electrophysiologically and adding
spike waveforms, scaled according to a de-
sired signal-to-noise ratio (SNR). This pro-
cedure dissociates the local field potential
(LFP) components of the signal from the
spike times. B: block diagram of the spike
removal algorithm. The algorithm assumes
that the wideband voltage signal is generated
by the sum of a low-frequency LFP compo-
nent, spikes of limited duration occurring at
known times, an offset, and white noise.
These assumptions are embedded in a prob-
abilistic model and the most likely LFP is
then determined through Bayesian inference.
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y 	 w � �
k	1

m

�k � � � � (3)

Here m is the number of sorted neurons emitting spikes. The high-
frequency component of the kth neuron �k is created by the convo-
lution of the neuron’s spike train sk, assumed known (see Fig. 1B), and
the neuron’s spike waveform �k

�k 	 �k � sk (4)

Importantly, waveforms �k are not set to the mean waveforms
determined by spike sorting or by spike-triggered averaging the
wideband signal, as in previously proposed methods of eliminating
spike remnants (Pesaran et al. 2002). Rather, the waveforms �k are
considered as free parameters and are estimated optimally as a part of
the algorithm. The offset � is introduced to compensate for the fact
the mean of �k is likely to be negative.

The generative model (Eq. 3) contains more unknowns (w, �k, and
�) than knowns. Thus assumptions must be introduced to make the
estimation of the local field potential w well-posed. We first assume
that the local field potential is smooth or, equivalently, that most of its
power lies in the low frequencies

p(w) 	 N(0, �2
) (5)

Here N(a, �) represents a multivariate Gaussian with mean a and
covariance �. Capital gamma (�) is a matrix that embodies our
assumption of smoothness. Multiplication of a vector x by this matrix
(�x) produces a low-pass filtered version of the target x. The matrix
was chosen to be circulant, a property necessary to make estimation of
the local field potential tractable; definitions and properties of circu-
lant matrices are discussed at length in the Supplemental APPENDIX.1

Gamma (�) controls the strength of the prior. Our second assumption
is that � is generated by a white noise process, p(�) � N(0, �2I).
Finally, we assume that spike waveforms �k lie in a subspace B

�k 	 B�k (6)

We chose B so that spike waveforms were described by one parameter
per time sample in the interval from �1 to �2 ms relative to the peak
depolarization. This duration of 3 ms was chosen based on the
traditional length of snippets used in spike sorting, generally ranging
from 1.5 to 3 ms.

To estimate the local field potential w, the spike waveforms �k, and
the offset �, we used Bayesian inference to obtain maximum a
posteriori (MAP) model parameters. By Bayes’ theorem, the log-
posterior of the model is

p(w, �k, �|y)�p(y|w, �k, �)p(w)

	 k exp��
1

2�2�
i
�y � w � �

k	1

m

�k � ��
i

2

�
1

2�2w'
�1w � (7)

Here k is a constant factor. By taking the log of this expression and
setting partial derivatives with respect to the parameters to 0, we
obtain the MAP estimates of the parameters

w 	 (�2
 � �2I)�1�2
�y � �
k

sk � (B
k) � ��

k 	 (sk � B)��y � w � �

j�k
s j � (B
 j) � ��

� 	
1

n�
i �y � w � �

k
sk � (B
k)� (8)

Here A� � (A=A)�1A= denotes the Penrose–Moore pseudoinverse.
These equations can be understood as follows. First, the optimal offset
of the model �� is simply the mean of the wideband signal with the
LFP and spike contributions removed. Second, the optimal local field
potential w� is related to the spike-free, mean-corrected wideband

signal z � y � �k sk�(B��k) � �� by matrix multiplication with (�2� �
�2I)�1�2�. Multiplying a vector by this matrix low-pass filters the
vector and thus the model tells us that the optimal LFP is obtained by
low-pass filtering the wideband signal after removing spike wave-
forms around the time of every spike.

The key equation is the second in the series, which governs the
spike waveforms. By the properties of the pseudoinverse,
(sk�B)�(sk�B)a � a. Now to recover a waveform a from a train of
waveforms (sk�B)a, one simply needs to take the spike-triggered
average of this signal normalized by the autocorrelation of the spike
train. Thus the optimal spike waveform for the kth neuron is given by
the decorrelated STA of the wideband signal minus the LFP, the spike
contributions from other neurons, and the offset. However, since the
optimal LFP is mostly determined by low-pass filtering the wideband
signal, the overlap between spikes from different neurons is often
negligible and spike trains are uncorrelated at short time lags due to
the absolute refractory period, it follows that to a first approximation
the optimal waveform for a given neuron is equal to the STA of the
high-pass filtered wideband signal.

In practice, the optimal spike waveform determined by the model
can vary substantially from the STA of the high-pass filtered wide-
band signal because of the various corrections it applies. A fast and
effective model-based spike removal algorithm can be derived by
decoupling the Eq. 8 system and applying the conjugate gradient
descent to solve the resulting equations, as shown in the APPENDIX. An
implementation of this algorithm in Matlab is available from our
website (http://apps.mni.mcgill.ca/research/cpack/lfpcode.zip). For
the model to be fully specified, the strength of the prior relative to the
noise �2/�2 must be estimated because this determines what the model
considers as signal and what it discounts as noise. In the APPENDIX, we
show how marginal likelihood (or evidence) optimization is used to
estimate prior and noise levels. We also detail in the APPENDIX how to
choose an appropriate form for the prior matrix � and how to optimize
performance for long recordings.

Other spike removal algorithms

Two methods to remove spike waveforms from wideband signals
were also tested in both simulated and real data. The first method,
known as mean spike removal, simply subtracts the mean spike
waveform from the wideband signal at the corresponding spike times.
Here we used a 3-ms window (1 ms before the spike and 2 ms after)
to recover the mean spike waveform. This was chosen for comparison
with our Bayesian algorithm, which used a window of the same size.
A second method uses linear interpolation to replace the wideband
signal around the time of each spike, using the same time window as
that in the other methods (3 ms).

R E S U L T S

Spectral composition of spike waveforms

Spikes are by definition fast events that are dominated by
temporal frequencies far higher than those that make up the
LFP signals. Thus it is natural to assume that low-pass filtering
the raw voltage signal will remove the spikes and that what
remains will be a pure estimate of the LFPs. This assumption
can be examined by computing the power spectrum of a typical
spike waveform and Fig. 2A shows one such waveform re-
corded extracellularly in our laboratory. As is typical in such
recordings, the duration of the action potential is on the order
of 1 ms and the corresponding waveform contains both a peak
and a trough. Consequently, the power spectrum (Fig. 2B, top)
is dominated by high frequencies. However, closer inspection
of the power spectrum shows that there is a small amount of
power at low frequencies in this fast waveform (as shown in1 The online version of this article contains supplemental data.
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Fig. 2B, bottom), particularly in some of the frequencies
(100–200 Hz) that are often examined in LFP studies (Gold et
al. 2006).

The bottom panel of Fig. 2A shows the result of applying a
low-pass filter to the spike waveform shown in the top panel.
Although this filtering reduces the amplitude of the waveform,
some residual signal remains and this residual retains the basic
shape of the original waveform. Moreover, the residual signal
is stretched in time over an interval determined by the cutoff
frequency of the low-pass filter (here on the order of 10 ms).

Beyond the low-frequency content of individual spike wave-
forms, the temporal structure of spike trains can contain addi-
tional power at low frequencies (Bair et al. 1994). Conse-
quently, if spikes are not properly removed, a succession of
spikes can contain more power at low frequencies than an
individual waveform would indicate. These considerations
suggest that the commonly used technique of low-pass filtering
the raw voltage signal is not entirely sufficient to isolate the
LFP signals. To estimate the magnitude of this problem, we
developed a set of ground-truth simulations that allowed us to
quantify the effects of spike contamination in a context where
the veridical LFP signal is known.

Spectral contamination in simulated data

The basis of the simulations was a phase-randomized wide-
band signal with the same frequency content as that of a real
wideband signal (see METHODS and Fig. 1A for details). By
combining this signal with spike waveforms taken from elec-
trophysiological recordings (see following text), we obtained a
composite signal similar to that typically recorded with elec-
trophysiological methods but in which the LFPs and spike
times were completely dissociated. This allowed us to perform
ground-truth simulations in which any temporal relationship
between spikes and LFPs was necessarily an artifact of the
method of analysis. The duration of the phase-randomized
signal in all our simulations was 3 min.

Figure 3 shows a short segment of the signals used in our
ground-truth simulations. The top panel shows a phase-ran-
domized wideband signal before (red line) and after the addi-

tion of spikes with a mean amplitude of 2 dB (blue line, offset
downward to facilitate reading). The middle panel shows these
same signals after low-pass filtering. Here the difference be-
tween the signals is much less visible, which suggests that in
some analysis scenarios low-pass filtering may be sufficient to
remove spike traces. The bottom panel, however, reveals that
the deviations between the two signals (green line, scaled by a
factor 3 to facilitate reading) are centered around the time of
spikes (gray lines) and are highly stereotyped. These small
spike remnants can bias analyses of LFPs, as we show in the
next sections.

Spike-triggered average (STA) of the LFP

As shown in Fig. 2, a typical spike waveform contains power
at low frequencies, which can potentially complicate the iso-
lation of the LFP component of the raw voltage signal. In
particular, although the magnitude of the low-frequency com-
ponent is relatively small (Fig. 3, bottom), its importance could
be amplified by analytical techniques aimed at finding the
components of the LFP that are correlated with spikes. One
common example of such an analysis is the STA of the LFP.

The STA of the LFP is obtained by averaging the LFP
signals recorded around the time of each spike. In principle this
method is useful for inferring causal relationships between the
two signals and it is commonly used to study local neuronal
synchronization related to the discharge of a specific neuron
and to compute the average spike-related modulation in spe-
cific LFP bands. The shape of the STA reveals the nature of
such correlations, whereas a flat STA suggests that the two
signals are unrelated.
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We first examined the STA of a composite signal in which
the SNR of the spike relative to the LFP was set to 2 dB and
the mean spike rate was 9 spikes/s. Prior to calculation of the
STA the raw composite signal was low-pass filtered to remove
frequencies �170 Hz. However, inspection of the resulting
STA in Fig. 4A (top) reveals clear residual structure, indicating
that low-pass filtering is insufficient to separate spikes from
LFPs. The artifact has a shape similar to that of the mean
waveform, but has a longer duration, as expected from Fig. 2A
(bottom). The exact shape of the artifact is determined by the
properties of the low-pass filter.

For comparison we also computed the STA associated with
a signal that was filtered with a single-pass Butterworth filter
(Fig. 4A, middle), which is commonly implemented in analog
circuits that are part of LFP recording hardware. In addition to
the spurious STA, this filter also introduces frequency-depen-
dent phase shifts, as reported previously (Nelson et al. 2008).
Thus the commonly used approach of low-pass filtering the
raw voltage signal appears to alter both the magnitude and
timing of spike–LFP correlations.

The effects of this contamination are decomposed into dif-
ferent frequency bands in Fig. 4B. Here the STAs affected by
spike contamination are shown in blue, whereas STAs obtained
after the application of the spike removal algorithm introduced
in the next section are shown for reference in red. The residual
influence of spikes is present in all frequency bands and is
particularly strong at low- and high-gamma frequencies.

Although the STA can detect linear relationships between
spikes and LFPs, it is insensitive to higher-order correlations
between these signals. The wavelet STA, however, can reveal
transient changes in the relative instantaneous power in differ-
ent frequency bands around the time of spikes, the signature of
a more complex relationship between LFPs and spikes (Burns
et al. 2010; also see METHODS). Figure 4C (top) shows that the
wavelet STA is also sensitive to contamination by spikes. Here
contamination is restricted to LFP frequencies �100 Hz at 0

ms time lag (deep red color). Note that the stripe pattern visible
at low frequencies is due to chance fluctuations in the power at
these frequencies and is not significant.

Bayesian spike removal algorithm

To address the contamination issues illustrated in Fig. 4, we
developed an algorithm that removes spikes from raw voltage
traces. The algorithm assumes that the wideband voltage signal
is generated by the sum of a low-frequency LFP component,
spikes of limited duration occurring at known times, an offset,
and white noise (see Fig. 1B, bottom diagram, and METHODS).
These assumptions are embedded in a probabilistic model and
the most likely LFP is then determined through Bayesian
inference. The optimal parameters of the model have straight-
forward interpretations (see METHODS and the APPENDIX): spike
waveforms are essentially STAs of the high-pass filtered wide-
band signal, whereas the LFP is given by the low-pass filtered
wideband signal after the subtraction of the contribution of
spikes.

Figure 4A shows that the magnitude of the STA of the LFP
when the composite signal is preprocessed through different
methods. As mentioned earlier, a spurious STA is obtained
following standard low-pass filtering (top two panels), whereas
our spike removal algorithm greatly reduces this artifact (bot-
tom). Figure 4B shows the STAs at different frequencies, with
the LFP derived through standard low-pass filtering indicated
in blue. The red lines show the STAs at different frequencies
following application of our spike removal algorithm. The
magnitude of the spurious correlation is now much smaller,
particularly at high frequencies. Because the spike removal
method removes the mean spike only at spike times, and thus
will not remove all spike remnants when spike shapes for a
given neuron are not completely stereotyped, some residual
second-order correlations between spikes and LFPs could re-
main. Nevertheless, the method is effective at attenuating
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FIG. 4. STAs for the 2-dB simulated case. A: spike-triggered average (STA) of the LFP signal filtered with a Butterworth single-pass filter (top panel), a
Butterworth double-pass (zero-phase) filter (middle panel), and a zero-phase filter after applying the spike removal algorithm (bottom panel). B: STAs of specific
LFP frequency bands before (blue trace) and after (red trace) spike removal. C: normalized wavelet STA before (top panel) and after (bottom panel) spike
removal.
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spurious correlations in the wavelet STA, as shown in Fig. 4C.
Additional details on the derivation and implementation of the
spike removal algorithm are given in the APPENDIX, which also
covers more challenging conditions, such as long recordings or
nonstationary spike shapes that result from electrode drift.

Phase synchronization

Another quantity commonly used to assess spike–LFP rela-
tionships is the synchronization between spikes and LFPs at
different frequencies. This is typically manifested as a prefer-
ence for spikes to occur at specific phases of the LFP oscilla-
tion cycle and such preferences may reveal synchronization of
the local presynaptic activity. This synchronization can be an
alternative way of encoding behaviorally relevant signals,
particularly those related to visual attention (Fries et al. 2008),
motor planning (Denker et al. 2007), motor output (Baker et al.
1999), and memory consolidation (Paz et al. 2008; Siapas et al.
2005). The frequency at which spikes are locked can also
provide hints about the spatial and dynamic properties of the
neural circuitry driving the neuron (Liu and Newsome 2006).

One method that is commonly used to assess the synchroniza-
tion between spikes and LFPs is the spike-field coherence (SFC),
obtained from the power spectrum of the STA. Figure 5A shows
the SFC as a function of frequency for simulations in which the
composite signal was preprocessed with low-pass filtering
(blue) and our spike removal algorithm (red). When spikes are
removed by low-pass filtering alone, prominent phase synchro-
nization is seen at the higher frequencies and this artifactual
relationship disappears following spike removal.

Figure 5B shows the phase-locking histogram, which mea-
sures the distribution of the instantaneous phase of the LFP at
different frequencies at the time of spikes. Here it is clear that
this measure is particularly sensitive to spectral contamination
of the LFP. Note that the slant visible in the phase–frequency
relationship is due to frequency-dependent phase shifts induced
by the causal low-pass filter.

LFP tuning curves

A final quantity of interest is the tuning curve, which
captures the magnitude of the spike or LFP response as a
function of an experimentally manipulated sensory or motor
variable. Comparison of tuning curves obtained from the two
signals provides additional insight into local cortical process-
ing, the architecture of such neuronal circuits (Liu and New-
some 2006), the spatial extent of the LFP (Katzner et al. 2009),
and links of LFP features to synaptic inputs and neuronal
outputs (Khawaja et al. 2009). We therefore examined the
tuning of a composite signal in which untuned LFPs were
combined with the waveforms of well-tuned spikes. For the
latter both the waveforms and the tuning curves were taken
from a single-unit recording of a neuron found in the middle
temporal area (MT) of a macaque monkey. The tuning curve
for the spiking responses of this neuron for the motion direc-
tion of a visual stimulus is shown in Fig. 6A.

Figure 6 shows the LFP tuning curve for the high gamma
band, with low-pass filtering of the raw signal and after our
spike removal algorithm was applied (Fig. 6B). Because the
LFP signal is untuned by construction, successful spike re-
moval should yield responses that respond roughly equally to
all motion directions, whereas spike contamination will man-
ifest itself as tuning for the downward-rightward motion shown
in Fig. 6A. The results show that both LFP tuning curves are
untuned for visual motion direction, suggesting that the spikes
do not introduce spurious tuning into the LFPs, even at higher
frequencies (high gamma band).

Summary of spike contamination in simulated data

Our simulation results reveal that spike contamination can
introduce strong artifactual correlations between spikes and
LFPs. In further stimulations we found that both spike ampli-
tude and the firing rate of a neuron affect the magnitude of
spike contamination in LFPs, with larger firing rates and spike
amplitudes leading to greater contamination. Supplemental
Figs. S1 and S2 and Table 1 provide summaries of the mag-
nitude of spike contamination for different spike amplitudes
and firing rates. As shown in Supplemental Fig. S1, the
normalized amplitude of the STA of the LFP rises linearly as
spike amplitude increases. Similarly, higher values of SNR
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FIG. 6. Tuning curves for the 2-dB simulated case. A: direction tuning
curves from single units recorded in macaque visual cortex. B: direction tuning
curves from high-gamma LFPs before (middle panel) and after (right panel)
spike removal. Lower-frequency bands exhibited similar tuning characteristics
before and after spike removal and are omitted for space considerations.
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FIG. 5. Phase-locking analysis results for the 2-dB simulated case.
A: spike-field coherence (SFC) of the LFP signal before (blue trace) and after
(red trace) spike removal. B: phase-locking histogram before (top panel) and
after (bottom panel) spike removal.
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give higher artifactual values of the SFC and raise the proba-
bility of a neuron being considered phase-locked to specific
frequency ranges (Table 1). A weaker effect is observed for
high neuronal firing rates (Table 1).

Other spike removal approaches

As an alternative to simple low-pass filtering, one might
attempt to estimate LFPs by removing individual spikes from
the wideband signal. This has traditionally been accomplished
using one of two methods. The first method involves subtract-
ing each neuron’s mean action potential waveform from the
raw signal at the corresponding spike times. A second ap-
proach involves removing each action potential and interpolat-
ing the wideband signal across the resulting gap. Figure 7
compares the performance of these approaches with the Bayes-
ian algorithm, for three of the metrics discussed earlier (LFP

STAs, wavelet STAs, and phase-locking histograms). Here the
simulated data are the same as those used in the previous
figures.

The top panel of Fig. 7A shows that the mean spike removal
method did not completely remove the residual spike correla-
tion from the STA [a difference of 0.48 dB or 16% more
residual compared with the Bayesian spike removal (green
line)]. By contrast, the interpolation method (Fig. 7A, middle
panel) seems to perform overly aggressive spike removal, in
the process introducing an artificial positive deflection of the
LFP STA around the moment of the spike (a difference of 1.68
dB or 44% more residual compared with the Bayesian spike
removal). For the wavelet STA (Fig. 7B), the mean spike
removal method (top panel) succeeds in attenuating the spuri-
ous correlations, as does the interpolation method (middle
panel). Indeed the latter method slightly outperforms our
Bayesian algorithm (bottom panel) for this particular measure
(SD of the wavelet coefficients for the interpolation method is
0.0013, for the mean spike removal and the Bayesian algorithm
0.0015 and for the low-pass filter 0.0036). However, as shown
in Fig. 7C (middle panel), interpolation can introduce signifi-
cant spurious correlations into the phase locking histogram.
For this measure mean spike removal (Fig. 7C, top panel) also
fails to remove the spurious phase locking correlations, while
the Bayesian algorithm shows little residual structure (bottom
panel). These results are confirmed by the P values of Rayleigh
statistical tests (0.008 for the mean spike removal, 0.004 for the
interpolation method and 0.74 for the Bayesian algorithm, with
the hypothesis of phase-locking for a value of P � 0.01).

Thus we find that removal of individual spikes is generally
preferable to low-pass filtering the wideband signal. Of the
methods for removing individual spikes, removal of the mean

TABLE 1. Results of Rayleigh tests for all simulations

Case
P value (high

gamma)
P value (low

gamma)
P value (low
frequencies)

SNR, dB
�5 0.3931/0.8710 0.1184/0.1137 0.2748/0.2727
0 0.0087/0.9281 0.1232/0.1206 0.2749/0.2780
5 0/0.7800 0.1425/0.1472 0.2740/0.2900
10 0/0.0148 0.2197/0.3149 0.2758/0.1767

MFR, spikes/s
5 0.0520/0.2772 0.1183/0.4079 0.3245/0.6200
10 0.0188/0.5650 0.4264/0.7205 0.3740/0.3300
20 0.0040/0.4500 0.2300/0.5600 0.3100/0.2900

P values computed with the Rayleigh test, before and after spike removal
(value before/value after). A hypothesis of phase-locking stands for P � 0.01.
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FIG. 7. Comparison of spike removal methods for the 2-dB simulated case. A: STAs of the LFP signal. B: normalized wavelet STAs. C: phase-locking
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spike waveform most often leaves residual, artifactual spike–
LFP correlations. Interpolation methods perform better by
aggressively removing all signals related to each spike, but in
the process they can introduce other types of spurious corre-
lations. In most cases our Bayesian algorithm outperformed
both previous approaches. Furthermore, as we show in the
DISCUSSION and the APPENDIX, the Bayesian algorithm general-
izes the advantages of these previous approaches, while casting
the problem in a rigorous mathematical framework within
which key assumptions can be made explicit.

Real recordings

SINGLE NEURONS. The previous sections showed that low-pass
filtering cannot completely remove spike waveforms from
composite signals constructed to have no correlation between
spikes and LFPs. The resulting spectral contamination of the
LFP can introduce significant bias into such measures as the
STA, the wavelet STA, the SFC, and phase-locking histo-
grams, especially for higher-frequency bands. By comparison,
we found that the tuning of the LFP to stimulus features as
measured by tuning curves is not significantly affected by
spikes, even when spike responses are strongly tuned. We
introduced a new spike removal algorithm that performs better
than low-pass filtering.

To examine the consequences of these findings for signals
obtained in vivo, we recorded single-unit activity and LFPs
from two alert macaque monkeys. A total of 26 isolated
neurons in areas V6 (19) and MT (7) neurons were analyzed.
Both areas are specialized for the processing of visual motion
(Fattori et al. 2009; Maunsell and Newsome 1987). In each
case, we determined the selectivity of the single-unit activity
for visual motion by drifting a sinusoidal grating or a random-
dot stimulus in 12 different directions spaced evenly around the
circle. Cells that failed to respond to the stimulus or that lacked
direction selectivity (defined in METHODS) were excluded from
the analysis.

As shown for a typical cell in Figs. 8 and 9, the trends in the
real data qualitatively match those in our simulations. In
several cases, including the one illustrated in Fig. 8, the LFP
was correlated with the timing of spikes and this was apparent
in both STA analysis and phase synchronization. These corre-
lations were not removed by the spike removal algorithm. Thus
our results are consistent with previous findings (Gregoriou et
al. 2009; Whittingstall and Logothetis 2009) that indicate a
relationship between spike timing and LFP phase. However,
both the range of frequencies over which this relationship is
found and the magnitude of the correlations are affected by the
method of preprocessing the raw signals. For example, inspec-
tion of the spike-triggered coherence before spike removal
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(Fig. 9A, blue line) would lead one to conclude that high
frequencies of the LFP are robustly correlated with spikes,
whereas application of the spike removal algorithm shows that
in fact only low frequencies of the LFP are modulated with
spikes (Fig. 9A, red line).

Figure 10B shows LFP tuning curves before and after
removal of the spikes of a robustly tuned neuron (Fig. 10A). As
expected from our simulations, LFP tuning curves were essen-
tially unaffected by spike removal. The next section quantifies
the extent of this contamination for our population of cells.

POPULATION RESULTS. We assessed the level of spectral con-
tamination for different coherence metrics for all our neuronal
recordings and these results are shown in Fig. 11. Figure 11A
shows that the normalized amplitude of the LFP STA (SNR)
for various frequency bands, measured around the time of
spikes (10 ms before to 10 ms after peak depolarization), drops
significantly after the removal of spikes [average of 5 dB
(68%) drop for high gamma and 1 dB (20%) decrease for low
gamma]. The wideband signal, which contains both high and
low frequencies, is similarly affected [average of 7 dB (80%)
decrease]. In contrast, the STA at low frequencies is only
weakly affected by the spike removal algorithm. A similar
pattern was observed for the SFC, as shown in Fig. 11B. There
is on average a 66% decrease of SFC values for the high
gamma and a 30% decrease for the low gamma frequencies.

The effect of spike removal on phase-locking histograms fol-
lows a similar pattern across frequencies, as shown in Table 2.
The phase-locking metric is dramatically affected by spike
remnants, with the proportion of cells classified as phase-
locked to high gamma frequencies dropping by half after spike
removal.

In contrast to these results, Fig. 11C shows the correlation
between the LFP and spike tuning curves, both before and after
spike removal. For both high and low frequencies, the differ-
ence in the correlation coefficient of the two tuning curves is
very small (average reduction of 0.06 and 0.03, respectively),
indicating that spike contamination has little effect on LFP
tuning curves. This conclusion is further supported by the fact
that the points are clustered along the unity line, despite wide
variation in the extent to which the tuning of the two signals is
correlated. These results are consistent with our simulations
(Supplemental Figs. S1 and S2).

Other approaches of spike removal on real data

For comparison with previous approaches, we also estimated
the effects of mean spike removal and interpolation methods on
our real data and the results are shown for an example record-
ing in Fig. 12 (same example as that in Figs. 8 and 9). As in the
simulated data, mean spike removal leads to larger LFP STAs
and more structure in the phase-locking histogram (Fig. 12, A
and C). In this specific example, linear interpolation performs
very similarly to the Bayesian spike removal algorithm. How-
ever, across the population, both mean spike removal and
interpolation yield larger estimates of spike–LFP relationships
than our Bayesian algorithm (summary in Table 2). Although
ground-truth is not available in the real data, our simulations
from the preceding sections suggest that the greater synchro-
nization found with other algorithms is likely to be artifactual.

D I S C U S S I O N

In recent years there has been an increase in the sophistication
of analytical methods for interpreting neuronal activity. Although
these advances are important for understanding brain circuitry,
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FIG. 10. Tuning curves for an illustrative MT neuron. A: direction tuning
curves from a single unit. B: direction tuning curves for high-gamma LFPs
before (middle panel) and after (right panel) spike removal. The neuron used
for these tuning curves had a 1.6 dB SNR spike waveform.
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TABLE 2. Percentage of neurons phase-locked to LFP frequencies
for various spike removal algorithms

Percentage of Phase-Locked Neurons High y Low y Low Frequencies

Low-pass filtered LFP 100.0% 96.4% 67.9%
Mean spike removal 73.1% 84.6% 64.3%
Interpolation method 80.7% 88.5% 65.4%
Bayesian spike removal 50.0% 79.3% 64.3%
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they are also easily influenced by particular assumptions about the
way in which the raw signals should be processed. In this study,
we have explored one issue related to such signal processing by
quantifying the contamination of the LFP from action potential
waveforms in both simulated and real data.

Our results show that estimates of the relationship between
LFPs and spikes can be considerably affected by spike con-
tamination. This results simply from the spectral characteristics
of spike trains and individual spike waveforms: both have
power at the frequencies used to study LFPs (Fig. 2B). Con-
sequently, spikes and LFPs cannot be isolated from a raw
voltage signal with simple frequency-domain filtering. To
estimate the extent of this problem we performed simulations
in which spike waveforms were added to phase-randomized
LFP signals, such that the spectral profile of the LFP was
maintained but there was no actual LFP–spike relationship.
Nevertheless, when LFPs were estimated by low-pass filtering,
our analysis showed artifactual spike–LFP STAs (Fig. 4) and
spurious phase-locking of spikes to LFPs (Fig. 5). This effect was
particularly strong at high frequencies. In contrast, tuning curves
in response to visual stimuli were not strongly affected by spike
contamination (Fig. 6), even at high frequencies (�140 Hz),
unless the spike-to-LFP power ratio was unnaturally high (�5
dB). Similar results were obtained using real recordings with
direction-tuned neurons from the primate visual system (Figs.
8–11). To address these issues we developed a novel Bayesian
spike removal algorithm and demonstrated that it is capable of
removing artifactual spike–LFP correlations.

Comparison with previous studies

Although the existence and potential importance of spectral
contamination of LFPs by spikes has been recognized for some
time (Pesaran et al. 2002), the issue has been addressed only

rarely in recent studies. One common approach in previous
work is to subtract the mean spike waveform from the raw
signal at each spike time (Pesaran et al. 2002; Zanos et al.
2006).

The generative model underlying our spike removal algo-
rithm was constructed to generalize this spike subtraction
method. In fact, we show in the APPENDIX that our spike
removal method reduces to the spike subtraction method when
spike waveforms do not overlap, no assumptions are made on
the smoothness of the LFP, and an offset term is not included
in the model. The full spike removal algorithm thus works
similarly to the spike subtraction method, but corrects for spike
train autocorrelations and reduces low-frequency components
in spike waveforms attributable to LFPs. Each of these adjust-
ments corrects for artifacts introduced by spike subtraction,
thus enabling more effective spike removal, as we show in
detail in Figs. 7 and 12 and the APPENDIX.

Another proposed method of spike removal is to replace
time samples around each spike with samples interpolated from
the LFP before and after the spike (Galindo-Leon and Liu
2010; Jacobs et al. 2007; Okun et al. 2010). This approach,
although again being superior to low-pass filtering, introduces
the difficulty of selecting the method of interpolation, includ-
ing the function used to interpolate and the length of its support
on either side of spikes, without a firm theoretical foundation to
justify these choices. Linear interpolation, which is commonly
used on wideband signals for this purpose, not only does not
completely remove spurious correlations but also introduces
new ones, as shown in detail in Fig. 7. The difficulty of
selecting a proper method could be alleviated by casting the
interpolation as a Bayesian inference problem similar to the
one considered here. Within this framework, the functional
form of the interpolation would be adjusted by the statistics of
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FIG. 12. Comparison of spike removal methods for an illustrative MT neuron. A: STAs of the LFP signal. B: normalized wavelet STAs. C: phase-locking
histograms for real data recorded from macaque visual cortex. Results are shown for the mean spike removal method (top panels), the interpolation method
(middle panels), and the Bayesian algorithm (bottom panels). For the LFP STAs, the results for the Bayesian algorithm are overlaid for comparison (green lines).
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the local field potential. A more fundamental issue is that when
recording in areas with high transient firing rates, interpolation
must sometimes be done over intervals several times longer
than a single spike waveform. This is likely to introduce
additional artifacts into the estimated LFP.

A recent method (David et al. 2010) uses a more sophisticated
linear filtering approach to remove all spike–LFP correlations
from the raw signal. In the APPENDIX, we show that our proposed
spike removal algorithm reduces to this method in the limit of
very long spikes. When very long spikes are assumed, however,
the method essentially removes all linear relationships between
spikes and LFPs, including legitimate correlations, and thus can-
not provide an estimate of the degree to which spikes and LFPs
are actually correlated. In contrast, our method focuses on remov-
ing the purely artifactual parts of the LFP signal that are intro-
duced by spike waveforms of short duration (�3 ms), while
preserving legitimate correlations that occur at longer timescales.
Although the method of David et al. (2010) can be modified to
accommodate the assumption of finite spikes, we show in the
APPENDIX that this leads to residual artifacts around the time of
spikes due to the way that the method handles edges.

Practical considerations for effective spike removal

Our spike removal algorithm assumes that the wideband
signal derived from extracellular recordings is the sum of a
low-frequency LFP signal, stereotyped spikes of finite length
occurring at known times, noise, and an offset (Fig. 1B). For
the spike removal process to be most effective, it is important
that careful preprocessing be done so that the signal closely
matches the assumptions of the generative model.

The form of the prior assumed on the LFP signal should be
adjusted so that it closely matches the empirical autocorrelation
properties of the observed signal; a practical procedure to choose
the form of the prior is detailed in the APPENDIX. Line noise should
be removed before spike removal because this effect is not dealt
with by the generative model (see METHODS). Furthermore, analog
filters in the recording hardware can cause frequency-dependent
phase shifts in the wideband signal (Nelson et al. 2008), which
may artificially lengthen the duration of the observed spike wave-
forms. This issue can be avoided by compensating for phase
distortions by digital filtering (Nelson et al. 2008).

Our spike removal algorithm will remove artifactual linear
correlations between spikes and LFPs regardless of whether the
spikes in the wideband signal are completely stereotyped. In
the latter case, however, residual high-frequency artifacts of
random phase will be visible around the time of spikes. These
artifacts may be picked up by second-order methods such as
the wavelet STA and Volterra methods (Zanos et al. 2006,
2008). It is therefore crucial to perform careful spike sorting
before removing spikes. It is also important that spike timings
be accurate because spike timings that are inaccurate by as
little as one or two samples will cause observed waveforms to
shift appreciably (Sahani 1999). Spike timings that are ob-
tained by thresholding a high-passed signal can be inaccurate;
more accurate timings can be obtained by aligning spikes to
their peak depolarization (Quiroga et al. 2004; Sahani 1999).
Additionally, if spike waveforms shift over time, for example
because of electrode drift, the algorithm should be applied on
short segments of the data to obtain the best results; we show
in the APPENDIX how to perform spike removal in chunks.

Many of these prescriptions are equally applicable to other
methods of spike removal and, of course, they do not guarantee
complete removal of spike artifacts from the wideband signal.
Nonetheless, we found empirically that the spike removal
algorithm diminished artifactual correlations to a great extent.
When an interesting finding relies crucially on the quality of
spike removal, it may be worthwhile to back up claims with
ground-truth simulations, similar to those of Fig. 1A.

Hardware considerations

Several manufacturers offer products designed to record
local field potentials (often designated LFP boards). These
boards typically low-pass filter the wideband signal from a
headstage, with a cutoff usually ranging from 150 to 300 Hz,
and sample the resulting signal at a typical rate of 1 kHz. Our
results indicate that the signals derived from these boards are at
all frequencies appropriate for analyses that are insensitive to
the relative timing of spikes and LFPs, for example to derive
tuning curves (Figs. 6 and 10). However, our results also imply
that analyses that are sensitive to temporal relationships between
spikes and LFP, including the STA, spike-triggered coherence,
phase-locking histograms, and predictions of spikes from LFPs,
can be corrupted by the presence of spike remnants in LFPs
derived from these boards. This contamination is especially strong
at gamma frequencies �60 Hz.

It may be possible to work around this contamination, either by
limiting analyses to frequencies �60 Hz, removing all linear
correlation between spikes and LFPs using the methods of David
et al. (2010), or by recording spikes and LFPs on different
electrodes. However, a safer approach is to acquire the complete
wideband signal during electrophysiological recording and to
perform careful postprocessing using methods similar to those
outlined here. For data that have already been recorded with LFP
boards, it may be possible to recover the spike-free LFP by
extending our algorithm to include a model of the processing
performed by the boards, but this has not yet been attempted.

Conclusions

Numerous studies examining the relationship between
spikes and LFPs have reported convincing and significant
results. Important examples include studies using spikes and
LFPs recorded from different electrodes (Gregoriou et al.
2009; Whittingstall and Logothetis 2009), spikes and cortical
EEGs (Whittingstall and Logothetis 2009), or spikes, LFPs,
and BOLD signals (Goense and Logothetis 2008) and results
like those shown in Figs. 8 and 9 are consistent with some of
these studies. However, our results indicate that commonly
used methods of preprocessing may lead to overestimation of
the association between spikes and LFPs. This is particularly
the case when low-pass filtering is used as the only prepro-
cessing step of the LFP, as has often been done in past work
(e.g., Chalk et al. 2010; Litaudon et al. 2008; Rasch et al.
2008). The existence and magnitude of spurious correlations in
such cases will depend on the nature of the data and the types
of analyses applied. Particularly when higher frequencies of
the LFP are analyzed with sophisticated nonlinear methods, the
effect of even modest contaminations on the results can be
significantly magnified (Zanos et al. 2006). On the other hand,
successfully removing the spike waveforms from the raw
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recordings can reveal significant spike–LFP relationships that
might otherwise have been masked (as in Fig. 9B).

We have introduced a spike removal algorithm that is designed
to remove specific spike waveform(s) from the raw voltage signal,
without affecting real spike–LFP correlations that are of great
interest to the study of neural circuitry. In simulations, where
ground-truth is available, our algorithm removed virtually all
spike artifacts and the results of all subsequent analyses on the
“spike-free” LFP did not show significant correlations between
spike timing and any frequency band of the LFP. Similarly, when
applied to real data the algorithm often eliminated artifactual
spike–LFP relationships that would have emerged from LFPs
obtained by low-pass filtering the raw voltage signal (Fig. 9).
However, in other cases (Figs. 8 and 9) strong spike–LFP corre-
lations remained after application of the spike removal algorithm
and such synchronization will be an important topic for further
study. Indeed, with accurate spike removal one can in principle
study spike–LFP relationships at higher LFP frequencies (�150
Hz), despite their overlap with the spectral content of the spike
waveforms.
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 19 

Supplementary information 20 

This section provides the mathematical details of our spike removal algorithm, its software 21 
implementation, and a comparison with other algorithms.  All Matlab code is available as online 22 
supplementary material and from our website (http://apps.mni.mcgill.ca/research/cpack/lfpcode.zip). 23 

Model and parameter estimation 24 
The model is as specified in the main Methods section; we repeat it here for easy reference, with slight 25 
changes in notation. Our goal is to estimate the local field potential (LFP) based on a measured 26 
wideband voltage trace of length ݊. We assume that this wideband signal ܡ is the superposition of a 27 

low-frequency local field potential ܟ, high-frequency spike components ࣁ௞, an offset ߤ and white noise 28 ૓ (Figure 1B): 29 
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ܡ ൌ ܟ ൅ ෍ ௞௠ࣁ
௞ୀଵ ൅ ߤ ൅ ૓ (1)

 30 

Here ݉ is the number of sorted neurons emitting spikes. The high-frequency component of the kth 31 

neuron, ࣁ௞, is created by the convolution of the neuron’s spike train ܛ௞, assumed known (see Figure 1B), 32 

and the neuron’s spike waveform ۰૎௞: 33 

௞ࣁ ൌ ௞൯۰૎௞ܛᇱ൫ܥ  (2)

Here the ܥᇱ(܉) returns a circulant matrix whose first row is ܉. The product ܥᇱ(܉)܊ returns the circular 34 
convolution of ܉ and 35 :܊ 

܊(܉)ᇱܥ ൌ (ܽ ٘ ܾ)௜ ൌ ෍ ܽሾ௜ି௝ሿ ௝ܾ௝  (3)

Here ܽሾ௞ሿ ൌ ܽ(௞ ୫୭ୢ୳୪୭ ௡)ାଵ. Circulant matrices have a number of properties that are crucial for the 36 

tractability of the model parameters; their properties are covered in detail in the last section. We call ࣁ௞ 37 
the waveform train of the kth neuron.  38 ۰ is a matrix of basis functions which map the spike parameters ૎௞  onto a spike waveform. Typically, 39 
the number of parameters that describe the spike waveforms is much smaller than the length of the 40 
signal, which implies that ۰ is much taller than it is wide.  41 

Assumptions are as follows: 42 (ܟ)݌ ൌ ܰ(0, (૓)݌ (ଶડߛ ൌ ܰ(0, (ଶ۷ߪ (4)

 

Here ܰ(܉, ઱) represents a multivariate Gaussian with mean ܉ and covariance ઱. ડ ൌ  is a 43 ((܏)ଵିܨ)ᇱܥ
matrix that embodies an assumption of smoothness, and ડܠ produces a low-pass filtered version of 44  .ܠ 

By Bayes’ theorem, we have that the posterior probability of the parameters is, up to an additive 45 
constant: 46 െ log ,ܟ൫݌ ૎௞, ૄหܡ൯ൌ ଶߪ12 ൭ܡ െ ܟ െ ෍ ௞൯۰૎௞௞ܛᇱ൫ܥ െ ൱ᇱߤ ൭ܡ െ ܟ െ ෍ ௞൯۰૎௞௞ܛᇱ൫ܥ െ ൱ߤ

൅ ଶߛ12  ܟᇱΓିଵܟ

(5)

 

We can solve for the MAP estimate of the parameters by taking partial derivatives of the posterior and 47 
setting derivatives to zero. The MAP estimates are given by: 48 
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 50 

 51 

ഥܟ ൌ (γଶડ ൅ ଶ۷)ିଵγଶડߪ ൭ܡ െ ෍ ௞൯۰૎ഥܛᇱ൫ܥ ௞௞ െ  ҧ൱ߤ

૎ഥ ௞ ൌ ൫ܥᇱ൫ܛ௞൯۰൯ା ቌܡ െ ഥܟ െ ෍ ௝൯۰૎ഥܛᇱ൫ܥ ௝௝ஷ௞ െ  ҧቍߤ

ҧߤ ൌ 1݊ ૚෡ᇱ ൭ܡ െ ഥܟ െ ෍ ௞൯۰૎ഥܛᇱ൫ܥ ௞௞ ൱ 

 

(6)

Here ۯା is the pseudoinverse ۯା ൌ  and ૚෡ is a vector of ones. It is possible to solve his 52 ,’ۯଵି(ۯ’ۯ)
system by taking initial guesses of the model parameters, recomputing the parameters using these 53 
equations in sequence and iterating. Convergence of this iterative solution is however too slow for this 54 
to be a practical solution because of the strong couplings1 between the LFP, the waveforms and the 55 
offset.  56 

Instead we isolate each parameter set individually, starting with the waveforms ૎ഥ ௞. To simplify the 57 

equations, we isolate ૎ഥ ௞ for a fixed value of ݇ on the assumption that the other waveforms ૎ഥ ௝ஷ௞  are 58 
known in advance. We will explicitly compensate for the errors induced by this simplification later. We 59 

thus define ܞ ൌ ܡ െ ∑ ௝൯۰૎ഥܛᇱ൫ܥ ௝௝ஷ௞  and drop the indices in the equations to lighten the notation: 60  61 ܟഥ ൌ ܞ)ۻ െ ۲૎ഥ െ ҧ)૎ഥߤ ൌ ۲ା(ܞ െ ഥܟ െ ҧߤ (ҧߤ ൌ 1݊ ૚෡ᇱ(ܞ െ ഥܟ െ ۲૎ഥ) 

(7)
 
Here ۲ ؠ ۻ and ۰(ܛ)ᇱܥ ൌ (γଶડ ൅  computes the spike-triggered sum 62 ܠଶ۷)ିଵγଶડ, a low-pass filter. ۲ᇱߪ
of the signal ܠ while ۲ܠ computes the waveform train associated with the spike waveform ܠ. By 63 
substituting ߤҧ into the first two equations, then isolating ܟഥ  in the first equation and finally substituting it 64 
in the second equation, we obtain the normal equation: 65 

۲ᇱ۸(۷ െ ۲૎ഥ(ۻ ൌ ۲ᇱ۸(۷ െ (8) ܞ(ۻ

Here ۸ ൌ  ۷ – ଵ௡ ૚෡૚෡’ is a centering matrix which when applied to a vector yields the same vector but with 66 

its mean set to 0. This equation can be interpreted as follows: the STA (۲’) of the centered (۸) high-pass 67 

                                                            
1 By strong coupling between parameters we mean that the terms of the Hessian of the log-posterior involving 
parameters of different types (LFP/waveforms/offset) are not negligible compared to terms of the Hessian 
involving parameters of similar type. 
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filtered (۷ െ waveform train (۲૎ഥ (ۻ ) is equal to the STA of the centered high-pass filtered wideband 68 
signal. 69 

While this equation is satisfyingly compact and intuitive, multiplication by ۻ must be done through 70 
multiplication in the Fourier domain, and hence a Fourier and an inverse Fourier transform need to be 71 
performed for every column of ۲; this operation is thus a bottleneck. Since spikes are assumed to be of 72 
finite duration, however, it follows that we can write ۰ ൌ  ሾ۰௦; ૙ሿ , where ૙ is a matrix of zeros of size 73 (݊ – ݍ ,݌ by (ݍ  ا  ݊ is the length of a spike and ݌ ൑  is the number of basis functions. Note that this 74 ݍ
requires time shifting the spike train ܛ so that an entry equal to 1 indicates the beginning of a spike 75 
rather than its peak. Substituting and simplifying (8), we find: 76 

۲ᇱ۸(۷ െ ۲(ۻ ൌ ۰௦ᇱ ܓ) כ ۰௦) െ 1n ൫ܛᇱ૚෡൯ଶ ቆିܨଵ ቆ ଶߪଶߪ ൅ ቇᇱ܏ଶߛ ૚෡ቇ ൫۰௦ᇱ ૚෡൯൫۰௦ᇱ ૚෡൯ᇱ
 (9)

 

Here כ denotes linear convolution with zero-padding, applied column-wise, and ܓ, the convolution 77 

kernel, is derived from ܉ ൌ Fିଵ ቀ ஢మఙమାఊమ܏ |F(ܛ)|ଶቁ by circular time shifting, with ݇௜  ൌ  ܽሾ௜ି௤ሿ. Since ݍ is 78 

small, the convolution in (9) is inexpensive and the equation can be solved by preconditioned conjugate 79 
gradients at negligible cost. After solving equation (9) sequentially for every neuron, we plug these 80 
estimates in the system of equations (6) and solve to find: 81 

ҧߤ ൌ 1݊ ૚෡ᇱ ൭ܡ െ ෍ ௞൯۰૎ഥܛᇱ൫ܥ ௞௞ ൱ (10)

 

Thus ߤҧ is equal to the mean of the wideband signal minus the mean of the spike contribution. Finally, 82 
the LFP ܟഥ  is given by the first equation in the system (6); it is the low-pass filtered wideband signal 83 
minus the spike contribution. In practice, the experimenter will probably want to use his or her own 84 
filter or filterbank on the despiked wideband signal to obtain the LFP. Hence ܟഥ  is never actually 85 
computed by the despiking algorithm; instead the algorithm works with and returns the despiked 86 
wideband signal, defined as: 87 

തܢ ൌ ܡ െ ෍ ௞൯۰૎ഥܛᇱ൫ܥ ௞௞ െ ҧ (11)ߤ

 

Because we ignored cross terms when solving for the spike waveforms ૎ഥ ௞, and also because of possible 88 
numerical instability, solutions must be checked for convergence. It can be verified using equation (6) 89 
that for every ݇, the following auxiliary equation holds: 90 

۰௦ሾ۰௦; ૙ሿᇱܥ(ܛ௞)۸(۷ െ (ۻ ቌܡ െ ෍ ௞൯۰૎ഥܛᇱ൫ܥ ௝௝ െ ቍߤ ൌ ૙ (12)
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This states that the STA of a high-pass filtered, centered despiked wideband signal projected onto the 91 
basis in which we express spike waveforms is 0. Convergence is attained when the largest deviation 92 
from 0 observed is smaller than some fraction of the standard deviation of ܡ. When convergence is not 93 
attained, the process is repeated. In practice, it rarely takes more than 2 iterations to reach 94 
convergence, even when there are several neurons emitting spikes.  95 

Supplementary Figure S3A shows an example of a wideband signal before and after spike removal. The 96 
two signals have been offset vertically to facilitate comparison. By construction, the proposed method 97 
removes only the mean spike waveform around the time of every spike, and hence does not remove all 98 
traces of spikes when the spike waveform is variable. It also relies on the information given by the 99 
experimenter about the timing of spikes, and does not remove spikes which have not been detected. 100 
These limitations can be overcome in large part with good spike detection, alignment, and sorting. In 101 
these cases the method performs admirably, as seen in this figure, and results in an appreciable change 102 
in the wideband signal. The changes are much less conspicuous when looking at the LFP, shown in Figure 103 
S3B. The difference between the two signals consists of a barely visible artifact around the time of every 104 
spike. Although the artifact is very small for each spike, it is highly stereotyped: it always occurs at the 105 
same time relative to spikes, and always has the same shape, sign and relative phase. Thus, any 106 
technique that looks at temporal relationships between spikes and LFPs will amplify the artifact, 107 
masking legitimate spike-LFP relationships, as we demonstrate in the main text.  108 

Relationship to spike removal by subtraction of the STA 109 
The algorithm is conceptually similar to previously proposed methods of spike removal, in particular 110 
methods that subtract a mean spike determined by spike-triggered averaging the signal at the time of 111 
each spike (Pesaran et al. 2002; Zanos et al. 2006). Here we make this connection more explicit and 112 
highlight the differences between our proposed method and spike removal by STA subtraction.  113 

Consider the case where the smallest interspike interval observed is equal to or longer than the duration 114 
of a spike, and the basis in which the waveform is expressed is given by ۰ ൌ  ሾ۷௤; ૙ሿ; here ۷௤ is the 115 

identity matrix of size ݍ by ݍ where ݍ is the length of a spike. Furthermore, assume that no information 116 
is known about the LFP, such that ߛଶ ՜ 0. Finally, assume that there is only one neuron spiking. Under 117 
these simplifying assumptions, the left hand side of equation (9) becomes: 118 

۲ᇱ۸(۷ െ ۲૎ഥ(ۻ ൌ ۰௦ᇱ ܓ) כ ۰௦૎ഥ) െ 1n ൫ܛᇱ૚෡൯ଶ ቆିܨଵ ቆ ଶߪଶߪ ൅ ቇᇱ܏ଶߛ ૚෡ቇ ൫۰௦ᇱ ૚෡൯൫۰௦ᇱ ૚෡൯ᇱ૎ഥ ൌ ଶݎ ൬۷ െ 1݊ ૚෡ܙᇱ൰ ૎ഥ  

 

(13)

Here ݎ is the total number of spikes. The right-hand side becomes: 119 

۲ᇱ۸(۷ െ ܡ(ۻ ൌ ,۷௤ൣݎ ૙൧ ൬۷ െ 1݊ ૚෡ᇱ൰ ൌ ܡ ଶݎ STA൫ܡ െ mean(ܡ)൯ 

(14)
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Solving for ૎ഥ  by inverting ቀ۷ െ ଵ௡ ૚෡ܙᇱቁ using the Woodbury matrix identity, we find: 120 

૎ഥ ൌ STA൫ܡ െ mean(ܡ)൯ ൅ ݊ݍݎ െ ݍݎ mean ቀSTA൫ܡ െ mean(ܡ)൯ቁ ൌ STA൫ܡ െ mean(ܡ)൯ ൅ ܿ 

(15)

 

Under these assumptions, the spike waveform ૎ഥ  is equal to the spike-triggered average of the centered 121 
wideband signal plus an offset ܿ. Hence our proposed algorithm reduces to earlier proposals of 122 
removing spikes by subtracting the mean spike around the time of each spike in the limit of non-123 
overlapping spikes and no assumptions on the smoothness of the LFP, save for the appearance of an 124 
offset ܿ.  125 

The appearance of this offset is puzzling, especially its sign which is the opposite of what intuition might 126 
dictate. This can be explained by the fact that the mean of the wideband signal will rise after spike 127 
removal, assuming spikes are negative. But the STA around the time of the spike will be zero after spike 128 
removal, which is inconsistent with this positive mean, and this will cause an artifactual downward dip in 129 
the STA around the time of a spike. The offset corrects this artifact. 130 

 Now that the relationship between our method and straightforward spike removal is clear, we can ask 131 
to what extent the unique features of our method are useful. The most important unique feature of our 132 
method is the assumption that the LFP is smooth. This assumption is crucial to obtain a correct estimate 133 
of the STA of the despiked signal when there is a real relationship between spikes and the LFP. This is 134 
illustrated in Figure S4 where we have created a surrogate signal composed of spikes and an LFP 135 
composed of low-frequency noise and a Gabor of smaller magnitude and longer time scale than a spike 136 
at every spike.  Thus, there exists a true relationship between the spikes and the LFP. The STA of the 137 
despiked wideband signal when no assumptions are made has a prominent artifact around the time of a 138 
spike: it is flat and equal to 0. When an assumption of smoothness is made, however, the method 139 
correctly interpolates the signal around the time of the spike (Figure S4A). Figure S4B shows that the 140 
STA of the LFP obtained by smoothing the despiked signal without assumptions has an artifactual 141 
upward deflection around the time of the spike, while the STA under a smoothness assumption is 142 
correctly estimated. The proposed method accomplishes this better behavior around spikes by adjusting 143 
the spike waveform, as shown in Figure S4C. The difference between the two waveforms, illustrated in 144 
Figure S4D, appears to consist of a DC, linear, and quadratic trend. This shows that our method adjusts 145 
spikes waveforms by attenuating low-frequency trends which it attributes to the LFP.  146 

It is important to understand that while the proposed method does noticeably better than previously 147 
proposed methods, it has its limitations. Our method works best when spikes are assumed to be short. 148 
When longer spike times are assumed (say, larger than 4 ms), the method works less well because in 149 
essence it must interpolate over a gap of several dozens of samples to determine what is part of the LFP 150 
and what is part of the spike. Paradoxically, therefore, the spike removal algorithm will be less 151 
aggressive in its spike removal when spikes are assumed to be too large. We therefore recommend 152 
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assuming spike lengths that are 3 ms or less; see the Choice of Basis section for another discussion of 153 
the choice of spike length. 154 

Hyperparameter estimation 155 
Recall that our model assumptions are that: 156 (ܟ)݌ ൌ ܰ(0, ;(ଶડߛ ડ ൌ ((܏)ଵିܨ)ᇱܥ (૓)݌  ൌ ܰ(0, (ଶ۷ߪ (16)

 

Up to now, we have assumed that ߪ and ߛ are known. The strength of the prior relative to the noise is 157 
important as it determines what the model considers as signal and what it discounts as noise. These 158 
hyperparameters, which control the regularization of the model, cannot be determined by MAP, unlike 159 
regular parameters (Wu et al. 2006). Here we determine these parameters by optimizing the marginal 160 
likelihood of the model, a metric which takes into account both the quality of the model fit to the data 161 
and the number of degrees of freedom in the model to determine the optimal degree of regularization. 162 
This method is also known as evidence optimization (Bishop 2007; see chapter 3 for a detailed 163 
introduction to this subject). We begin by ignoring the uncertainty in the model due to the parameters 164 

of the spike. ܢ is defined as before as the despiked wideband signal ܢ ൌ ܡ െ ∑ ௞൯۰૎ഥܛᇱ൫ܥ ௞௞ െ ҧ. ૎ഥߤ ௞  and 165 ߤҧ are assumed to have both been estimated according to the methods of the Model and Parameter 166 
Estimation section. The marginal likelihood of the model is defined as: 167 

,ߪ|ܢ)݌ ,ߛ (܏ ൌ න ,ܟ|ܢ)݌ ,ߛ|ܟ)݌(ߪ (17) ܟ݀(܏

 

The marginal likelihood is thus the likelihood of the data (and therefore the model) with the uncertainty 168 
in the model parameters ܟ marginalized out by integration. Unlike in MAP estimation, normalization 169 
constants that ensure that probabilities integrate to 1 are of crucial importance and thus are not 170 
ignored. The marginal likelihood is then: 171 

,ߪ|ܢ)݌ ,ߛ (܏ ൌ 1ඥ2ߪ|ߨଶ| 1ඥ2ߛ|ߨଶડ| න exp ൬െ ଶߪ12 ܢ) െ ܢ)ᇱ(ܟ െ (ܟ െ ଶߛ12 ൰ܟᇱડିଵܟ ܟ݀ (18)

Here |ۻ| is the determinant of the matrix ۻ. The integral is performed by completing the square inside 172 
the exponential. Taking the negative log of the integral and grouping terms which are independent of 173 
the hyperparameters into a constant term ݇ (compare eq. 3.86 in Bishop 2007), we find: 174 െ log ,ߪ|ܢ)݌ ,ߛ ൌ(܏ ݇ ൅ ݊ log ߪ ൅ ݊ log ߛ ൅ 12 log|۷| ൅ 12 log|ડ| ൅ 12 log|ିߪଶ۷ିଵ ൅ ଶડିଵ|൅ିߛ ଶߪ12 ܢ) െ ܢ)ഥ)ᇱܟ െ (ഥܟ ൅ ଶߛ12 ഥܟ ᇱડିଵܟഥ  ൌ ݇ ൅ 12 log ଶ۷ߪ| ൅ |ଶડߛ ൅ ଶߪ12 ܢ) െ ܢ)ഥ)ᇱܟ െ (ഥܟ ൅ ଶߛ12 ഥܟ ᇱડିଵܟഥ  

 

(19)
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The leading term measures the model complexity, while the trailing terms measure the misfit of the 175 
model to the data; the optimal hyperparameters strike the best balance between model fit and 176 
complexity by minimizing their sum. To find optimal hyperparameters, the negative log marginal 177 
likelihood is minimized numerically.  178 

Here circulant matrices are particularly useful in two ways. First, the normally problematic log 179 
determinant appearing in the marginal likelihood has the special form log ଶ۷ߪ| ൅ |ଶડߛ ൌ ∑ log(ߪଶ ൅௜180 ߛଶ݃௜) (see Circulant Matrices section for derivation), and is thus inexpensive to compute. Secondly, in 181 
the usual approach to evidence optimization (Bishop 2007), we find a MAP solution based on fixed 182 
hyperparameters and then determine optimal hyperparameters based on a fixed MAP solution, iterating 183 
until convergence. This iterative approach is taken because computing a MAP solution is usually 184 
expensive. 185 

In contrast, the error term 
ଵଶఙమ ܢ) െ ܢ)ഥ)ᇱܟ െ (ഥܟ ൅ ଵଶఊమ ഥܟ ᇱડିଵܟഥ  can be computed entirely in the Fourier 186 

domain as the discrete Fourier transform is an orthogonal transform, and thus preserves inner products 187 

up to a constant: ܉ᇱ܊ ൌ ଵ௡  Remarkably, during evidence optimization, we do not need to 188 .(܊)ܨᇱ(܉)ܨ

perform any forward or inverse Fourier transforms. We found that this non-iterative approach, enabled 189 
by the choice of circulant matrices, was more computationally efficient than the usual iterative solutions 190 
by almost an order of magnitude.  191 

We do, however, neglect the derivatives of ܢ with respect to the hyperparameters (recall that ૎ഥ ௞ is a 192 
function of the hyperparameters), and we need to compensate for this fact. The complete algorithm is 193 
as follows: 194 

Find optimal hyperparameters based on ܢ ൌ  195 ܡ
While convergence of hyperparameters and evidence is not reached 196 
 While convergence of auxiliary equation is not reached 197 
  Estimate each ૎ഥ ௞, ߤҧ 198 
 End while 199 
 Set ܢ ൌ ܡ െ ∑ ۰૎ഥ(௞ܛ) ܥ ௞௞ െ  ҧ 200ߤ
 Recompute hyperparameters based on 201 ܢ 
End while 202 
Return 203 ܢ 

Convergence of hyperparameters is then usually reached in less than 5 iterations. This algorithm is 204 
implemented in the Matlab function despikeLFP. Our implementation is highly optimized and fast 205 
enough to be of practical use in day-to-day research. For instance, a wideband signal lasting about 3 206 
minutes can be despiked in about 20 seconds on a medium-powered computer running 32-bit Matlab or 207 
in about 7 seconds on a high-powered computer running 64-bit Matlab on the Intel Core i7 platform. 208 
Computational times rise as ݊ log ݊, where ݊ is the length of the wideband signal, because of the use of 209 
FFTs by the algorithm. The method can scale to arbitrarily long recordings by performing the despiking 210 
on short segments of data, an approach we detail in the Chunking section.  211 
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Empirical estimate of g 212 
We have now shown how to optimize ߪ and ߛ using evidence optimization. There remains a vector of 213 
free hyperparameters ܏ which controls our assumptions on the frequency content of the LFP. Choosing 214 
this vector properly is crucial, since in essence the assumed frequency content of the LFP is the only 215 
means through which the model can discriminate which portion of the STA around the time of a spike is 216 
artifactual and which portion is due to legitimate spike-LFP correlations (see Relationship to spike 217 
removal by STA subtraction section and Figure S4 for more on this). 218 

If (ܟ)݌ ൌ ,0|ܟ)ܰ ଶડ୧୨ߛ is ܟ ଶડ), then the covariance ofߛ ൌ  denotes the expected 219 ܟܧ where ,(௝ݓ௜ݓ)ܟܧ

value over all ܟ. But because we constrain the prior matrix to be circulant, the covariance of ܟ is 220 

completely described by its autocovariance, ߛଶડ୧୨ ൌ ܟܧ ቀܧ௞൫ݓ௞ݓሾ௞ା௜ି௝ሿ൯ቁ. The Fourier transform of this 221 

autocovariance is the expected power spectral density (PSD) of ܟ, and thus we have: 222 

(ଶ|(ܟ)ܨ|)ܟܧ ן (20) ܏

 

Thus, ܏ should be matched to the expected PSD of the LFP.  Here we have two difficulties. First, we 223 
never actually observe the LFP, only the wideband signal. Second, we typically observe only a handful of 224 
such wideband signals, thus even if ܟܧ(|(ܟ)ܨ|ଶ) ൌ  because there are no spikes or noise in 225 (ଶ|(ܡ)ܨ|)ܡܧ

our recording, the mean empirical PSD of a handful of wideband signals is very noisy. 226 

We resolved these issues by using our knowledge of the properties of the LFP and the wideband signal. 227 
We know that in a certain range of frequencies where the LFP has most of its power, say 1-150 Hz, it 228 
account for most of the power in the PSD of the wideband signal and therefore ܟܧ(|(ܟ)ܨ|ଶ) ൎ229 ܡܧ(|(ܡ)ܨ|ଶ) in this frequency range. We therefore fit a function to the PSD of the wideband signal in the 230 

range of 1 to 150 Hz and extrapolated this function at lower and higher frequencies to obtain 231 .܏ 
Extrapolation with highly nonlinear functions is unadvisable, so we used functions which were constant 232 
at the lowest frequencies and linear in log-log space at higher frequencies, consistent with previous 233 
reports (Bedard and Destexhe 2009).  234 

We found that the function – exp(1 ൅ log  and decreases linearly for 235 ݔ which is constant for small ,(ݔ
large ݔ to provide an excellent fit to the PSD of the wideband signal within the range of 1 to 150 Hz. A 236 
procedure for fitting this function to a PSD is implemented in the Matlab function 237 
fitLFPpowerSpectrum. An example of such a fit is shown in Figure S5. Note that we purposefully set 238 ܏ to be lower than the empirical PSD of the wideband signal at the highest frequencies, as we know that 239 
most of the power at these frequencies is actually due to spikes. Some recordings may require a 240 
different function to be fit to the PSD of the wideband signal, for example when there is a peak in the 241 
PSD in a range of frequencies. Such a peak could happen for a variety of reasons, for example because of 242 
a low-pass filter in the recording system whose cutoff overlaps the PSD of the LFP or because of intrinsic 243 

properties of the recorded brain region. In that case, a sum of the function – exp(1 ൅ log  and a 244 (ݔ
logistic function could be used to fit the PSD of the LFP.  245 
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We obtained excellent results with this method of choosing ܏ (see Figure S4 for an example). Other 246 
functional forms that closely followed the envelope of the PSD of the wideband signal also performed 247 
well. Choosing a ܏ that was not adjusted to the statistics of the signal yielded less satisfactory results. 248 
For example, a choice of ܏ ൌ 1 for frequencies smaller than a cutoff of 200 Hz and a vanishingly small 249 
value elsewhere performed poorly. We therefore highly recommend that ܏ be selected on the basis of 250 
empirical PSD of the wideband signal. 251 

Choise of basis 252 
A final implicit set of hyperparameters is the basis ۰. Our algorithm assumes that this basis has the form 253 ሾ۰௦; ૙ሿ, which as we showed earlier is an appropriate form when we assume that spikes are finite. The 254 
height of ۰௦ corresponds to the duration of spikes measured in samples. As spike-sorting algorithms 255 
traditionally use snippets ranging in duration from about 1.5 to 3 ms, it is safe to assume that 3 ms is an 256 
upper bound for the duration of spike waveforms. Note that this duration does not correspond to the 257 
physical duration of a spike, which is shorter, but rather to the duration of the measured spike 258 
waveform, which is affected by the filters of the recording system. We chose the spike length to be 259 
equal to 3 ms (30 samples), and aligned spikes so that their peak was located at the 11th sample.  260 

Thus, the basis ۰௦ was taken to be the identity matrix of size 30x30. As we recorded in areas where 261 

neurons fire at high rates, and our sampling rate was relatively low, the spike waveforms ૎௞  were well 262 
constrained in this basis. When recording at higher sampling rates, or in areas with low firing rates, 263 
however, spike waveforms may be poorly constrained. In this case, ۰௦ can be chosen to be 264 
undercomplete, thus parametrizing spike waveforms in a low-dimensional subspace. For example, we 265 
could express the waveforms in a spline basis with a higher density of knots around the time of the peak 266 
of spikes than elsewhere.  267 

We must note, however, that this method has its limitations. Our algorithm is not well adapted to short 268 
recordings that contain a handful of spikes (say, less than 100), as it needs a sufficient amount of data to 269 
constrain the spike waveforms. When despiking trial data, therefore, one should perform the despiking 270 
on a continuous wideband signal, splitting the data into smaller chunks for trial analysis afterwards, if 271 
necessary.  272 

Our implementation of the despiking algorithm automatically multiplies the chosen basis by a whitening 273 
matrix ܅ obtained through a singular value decomposition, so that the basis internally by the algorithm 274 
is orthogonal, ۰௦ᇱ ۰௦܅ᇱ܅ ൌ ۷. This tends to improve numerical conditioning appreciably.  The 275 

implementation then expresses the spike waveforms ૎௞  in the original basis, so this is completely 276 
transparent to the end-user. 277 

Chunking 278 
When the signal is too long, it becomes inconvenient to perform the matrix operations required to 279 
estimate the local field potential. In addition, in long recordings electrode drift can cause spike 280 
waveforms to shift. We addressed these issues by splitting the signal into overlapping chunks, 281 
estimating the local field potential for each chunk, then stitching the results back to obtain the complete 282 
despiked signal.  283 
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The chunking scheme is illustrated graphically in Figure S6. Here we show a signal which is much shorter 284 
than one would use in reality for ease of visualization. The signal is split into overlapping chunks. Within 285 
each chunk, the signal is multiplied by an analysis window and added to a time reversed version of itself 286 
multiplied by 1 minus this window, thus creating a composite signal. The analysis window has a 287 
trapezoid shape: 288 

݂(݅) ൌ ۔ۖەۖ
ۓ 12 ൅ 12 ݅ܰ ڄ overlap ݅ ൏ ܰ ڄ overlap 1 ܰ ڄ overlap ൏ ݅ ൏ ܰ െ ܰ ڄ overlap1 െ 12 ݅ െ (ܰ െ ܰ ڄ overlap)ܰ ڄ overlap ݅ ൐ ܰ െ ܰ ڄ overlap  (21)

 

Here ܰ is the length of a segment and overlap is a variable that controls the degree of overlap 289 
between chunks. The edges are thus blended together to avoid discontinuities. The composite signal 290 
within each chunk is then despiked as in the previous sections. The despiked signals are put back 291 
together by multiplying each signal by a synthesis window and summing the windowed signals together. 292 
The synthesis window also has a trapezoid shape: 293 

݄(݅) ൌ
ەۖۖ
۔ۖ
ۓۖ 0 ݅ ൏ 2ܰ ڄ overlap(݅ െ 2ܰ ڄ overlap)ܰ ڄ overlap 2ܰ ڄ overlap ൏ ݅ ൏ 3ܰ ڄ overlap 1 3ܰ ڄ overlap ൏ ݅ ൏ ܰ െ 3ܰ ڄ overlap1 െ ݅ െ (ܰ െ 3ܰ ڄ overlap)ܰ ڄ overlap ܰ െ 3ܰ ڄ overlap ൏ ݅ ൏ ܰ െ 2ܰ ڄ overlap0 ݅ ൐ ܰ െ 2ܰ ڄ overlap

 (22)

 

The support of the synthesis window is smaller than the size of the analysis window, thus discarding the 294 
edges within each chunk. For the initial segment the analysis and synthesis windows are of a different 295 
shape to avoid artifacts at the beginning of the recording signal. The analysis window is given by: 296 

f݂୧୰ୱ୲(݅) ൌ ۔ە
ۓ 1 ݅ ൏ ܰ െ 4ܰ ڄ overlap 1 െ 12 ݅ െ (ܰ െ 4ܰ ڄ overlap)ܰ ڄ overlap ܰ െ 4ܰ ڄ overlap ൏ ݅ ൏ ܰ െ 2ܰ ڄ overlap0 ݅ ൐ ܰ െ 2ܰ ڄ overlap (23)

 

And the synthesis window is: 297 

݄f୧୰ୱ୲(݅) ൌ ൞ 1 ݅ ൏ ܰ െ 6ܰ ڄ overlap݅ െ (ܰ െ 6ܰ ڄ overlap)ܰ ڄ overlap ܰ െ 6ܰ ڄ overlap ൏ ݅ ൏ ܰ െ 5ܰ ڄ overlap 0 0  (24)
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The analysis and synthesis windows for the last chunk are mirror inverses of those of the first chunk. 298 

The number of chunks is determined by ܰ, which is given by the user implicitly through the 299 ܏ 
parameter, and the variable overlap, which is given explicitly. Because the number of chunks must be 300 
an integer, however, the method automatically adjusts the overlap upwards so that chunks are 301 
equispaced and that recovery windows add up to 1 everywhere. The method is implemented in Matlab 302 
as the function despikeLFPbyChunks. 303 

In simulations where ground truth was available, despiking by chunks gave essentially the same results 304 
as despiking an entire signal provided that chunks were large enough to obtain reliable estimates of 305 
spike waveforms. The chunk size should be a power of 2 for the fastest speeds as FFT routines are 306 
typically optimized for such cases (Frigo and Johnson 2005). We recommend using chunks that are a few 307 
minutes long (say 2-5 minutes) so that several hundred spikes will be present in each chunk. 308 

Relationship to LFP-spike correlation removal 309 
Our algorithm is closely related to the algorithm of David et al. 2010 which removes correlations 310 
between LFPs and spikes. To make this relationship clearer, we rewrite equation (7) under the 311 
assumption of a single spiking neuron as: 312 ܟഥ ൌ ܡ)ۻ െ ۲૎ഥ െ ഥܟ(ҧߤ ൌ ൯(ܡ)ܨܕଵ൫ିܨ െ ൯(۲૎ഥ)ܨܕଵ൫ିܨ െ ܽଵdespiked LFP ൌ LFP െ smoothed contribution from spikes െ offset 

(25)

 

Here ܕ ൌ ఊమ܏ఙమାఊమ܏  is a low pass filter. This can be compared to equation 7 of David et al. 2010: 313 

(ݐ)ܮ 314  ൌ (ݐ)଴ܮ െ despiked LFP(ݐ)୮୰ୣୢܮ ൌ LFP െ portion of the LFP predictable by spikes 
 

(26)

This suggests that the portion of the LFP predictable by spikes ܮ୮୰ୣୢ(ݐ) defined in David et al. 2010 may 315 

be similar to our smoothed contribution from spikes ିܨଵ൫ܨܕ(۲૎ഥ)൯. This connection is made clearer by 316 

joining equations (8), (9) and (25) together, and setting the basis ۰ ൌ  ሾ۷௤; ૙ሿ: 317 

൭ܓ כ ۷௤ െ ᇱ૚෡൯ଶ݊ܛଶ൫ݍ ൫ିܨଵ(1 െ ᇱ૚෡൯૚෡௤ᇱ(ܕ ൱ ૎ഥ ൌ ,۷௤ൣݎ ૙൧ିܨଵ൫(1 െ തതതതതത൯(ܛ)ܨ(ܡ)ܨ(ܕ െ ܽଵ ۹૎ഥ  ൌ ,۷௤ൣݎ ૙൧ିܨଵ൫(1 െ തതതതതത൯(ܛ)ܨ(ܡ)ܨ(ܕ െ ܽଶ ૎ഥ ൌ ,۹ିଵൣ۷௤ݎ ૙൧ିܨଵ൫(1 െ തതതതതത൯(ܛ)ܨ(ܡ)ܨ(ܕ െ ܽଷ
 

(27)

ܽ௜ are offsets and ۹ is a convolution matrix derived from ܉ ൌ ଵ൫(1ିܨ െ ௜௝ܭ ଶ൯ by time shifting, 318|(ܛ)F|(࢓ ൌ ܽሾ௜ି௝ାଵሿ. Hence our smoothed contribution from spikes is: 319 
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൯(૎ഥܦ)ܨܕଵ൫ିܨ ൌ ଵିܨ݌ ቆܨ(ܛ)ܨܕ ൬ൣ۷௤, ૙൧ᇱ۹ିଵൣ۷௤, ૙൧ିܨଵ൫(1 െ തതതതതത൯൰ቇ(ܛ)ܨ(ܡ)ܨ(ܕ െ ܽସ
ൌ ଵିܨ݌ ൭ܨ(ܛ)ܨܕ ቆ൤۹ିଵ ૙૙ ૙൨ ଵ൫(1ିܨ െ തതതതതത൯ቇ൱(ܛ)ܨ(ܡ)ܨ(ܕ െ ܽସ 

(28)

 

Meanwhile, the portion of the LFP predictable by spikes as defined in David et al. 2010 can be written in 320 
our notation as: 321 

(ݐ)୮୰ୣୢܮ ൌ ଵିܨߢ ൮ܨ(ܛ)ܨ ቌቂ ۸ ૙૙ ૙ቃ ଵିܨ ቆܕ ૛|(ܛ)ܨ|തതതതതത(ܛ)ܨ(ܡ)ܨ ቇቍ൲ (29)

 

Notice the similarity between these two equations. This is especially striking when taking into account 322 

that ۹ିଵ is related, but not equal to ઩ ൌ ଵିܨ ቀ1/൫(1 െ ,ଶ൯ቁ. Now suppose that ۹ିଵൣ۷௤|(ܛ)ܨ|(ܕ ૙൧ ൎ323 ൣ۷௤, ૙൧ܥᇱ(઩). This would hold if the support of ઩ is smaller than the length of spikes. Hence, taking q to 324 

be large, our smoothed spike contributions becomes: 325 

ൎ ଵିܨ݌ ൮ܨ(ܛ)ܨܕ ቌ൤۷ܙ ૙૙ ૙൨ ଵିܨ ቆ(ܛ)ܨ(ܡ)ܨതതതതതത|(ܛ)ܨ|૛ ቇቍ൲ െ ܽସ (30)

 

If we take the further step of assuming that the support of ିܨଵ(ܕ) is smaller than the length of spikes, 326 
the two equations become equal, modulo a different handling of offsets. Hence the methods are 327 
essentially equivalent in the limit of long spikes. With short spikes, however, the order of the filters and 328 
the projection matrix in each method is different, and hence they handle edges around the time of 329 
spikes differently. Specifically, in our method the smoothed spike contribution is obtained by first taking 330 
the STA of a high-passed filtered wideband signal, keeping the first ݍ elements of this STA, then undoing 331 
the high-pass filtering and compensating for the spike-train autocorrelation to obtain a spike waveform, 332 
and finally convolving this waveform with the spike train and smoothing it. In contrast, the David et al. 333 
method takes a STA of the low-pass filtered wideband signal, compensates for the autocorrelation of the 334 
signal, then keeps the first q elements of this STA to obtain the smoothed waveform which is convolved 335 
with the spike train to obtain a smoothed spike contribution.  336 

For small ݍ (short spikes), keeping the ݍ first elements of the STA of a low-passed filtered signal (the 337 
smoothed mean spike) will lead to artifacts at the edges of spikes. The exact way that the edges are 338 
handled in the David et al. method is further complicated in this method by the use of Hanning windows 339 
to perform the required Fourier transforms. The edge handling of the method of David et al. 2010 340 
should not be considered a design flaw, as the authors were interested in the scenario where ݍ is large, 341 
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in which case the edge handling is sufficient; it does, however, render their method inappropriate for 342 
removing spikes in the scenario where ݍ is small (short spikes). 343 

Appendix - Properties of circulant matrices 344 
A circulant matrix is defined as: 345 

(࢞)ܥ ൌ ێێێۏ
ۍ ଵݔ ଶݔ ଷݔ ڮ ௡ݔ௡ݔ ଵݔ ଶݔ ௡ିଵݔ௡ିଵݔ ௡ݔ ଵݔ ڭ௡ିଶݔ ڰ ଶݔڭ ଷݔ ସݔ ڮ ଵݔ ۑۑۑے

ې
 (31)

 

By this definition, circulant matrices are closed under addition and (ࢇ)ܥ ൅ (܊)ܥ ൌ ܉)ܥ ൅  The 346 .(܊
transpose of a circulant matrix is circulant. The product of two circulant matrices is circulant. Note also 347 
that the identity matrix ۷ is circulant. Multiplication of the transpose of a circulant matrix by a vector 348 
corresponds to a circular convolution: 349 

܊(܉)ᇱܥ ൌ (ܽ ٘ ܾ)௜ ൌ ෍ ܽሾ௜ି௝ሿ ௝ܾ௝  (32)

 

Here ܽሾ௞ሿ ൌ ܽ(௞ ୫୭ୢ୳୪୭ ௡)ାଵ with ݊ being the length of ܉. By the circular convolution theorem we have 350 

that: 351 

܊(܉)ᇱܥ ൌ ൯ (33)(࢈)ܨ(ࢇ)ܨଵ൫ିܨ

 

Here (܉)ܨ is the discrete Fourier transform of ܉. This implies the following properties: 352 ܥᇱ(܉)܊ ൌ ܊(܉)ܥ܉(܊)ᇱܥ ൌ Fିଵ ቀ(ࢇ)ܨതതതതതതത(࢈)ܨቁ ൫ܥԢ(܉)൯ିଵ ൌ ᇱܥ ቆିܨଵ ൬  ൰ቇ(܉)ܨ1

 

(34)

The determinant of a circulant matrix can be found by noting that: 353 ܥᇱ(܉)܊ ൌ Fିଵ൫(࢈)ܨ(ࢇ)ܨ൯ ൌ ۴෠ିଵdiag(۴෠܉)۴෠܊ 
 

(35)

Here ۴෠ is the discrete Fourier transform matrix (DFT matrix) which maps a vector onto its discrete 354 
Fourier transform. Hence: 355 

 356 
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|(܉)ᇱܥ| ൌ ห۴෠ିଵdiag൫۴෠܉൯۴෠ห ൌ ห۴෠ିଵหหdiag൫۴෠܉൯หห۴෠ห ൌ หdiag൫۴෠܉൯หห۴෠۴෠ିଵห ൌ ෑ abs൫۴෠܉൯௜௜  

(36)

 

This expression is valid for ܉ א Թே. Therefore the log-determinant of a circulant matrix is: 357 

log|ܥᇱ(܉)| ൌ ෍ log ௜|௜(܉)ܨ|  (37)

A symmetric circulant matrix corresponds to circular convolution by a symmetric kernel, and its 358 
corresponding Fourier coefficients are real. A symmetric circulant matrix whose corresponding Fourier 359 
coefficients are positive is positive definite and therefore is a valid covariance matrix. 360 

 361 

  362 
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List of supplementary figures 363 

Supplementary Figure 1: Summary of results for all spike-amplitude simulations 364 
A) SNRs and B) Mean Spike Field Coherence (SFC) for various normalized spike amplitude simulation 365 
cases for the wide band signal and three different bands of the LFP, before (upper panels) and after 366 
(lower panels) spike removal. 367 

Supplementary Figure 2: Summary of results for all firing-rate simulations 368 
A) SNRs and B) Mean Spike Field Coherence (SFC) for various mean firing rate simulation cases for the 369 
wide band signal and three different bands of the LFP, before (upper panels) and after (lower panels) 370 
spike removal. 371 

Supplementary Figure 3: Effect of spike removal in an example recording  372 
A) wideband signal before and after despiking B) low-pass filtered wideband signal before and after 373 
despiking. Note that although the spike artifact is barely visible after low-pass filtering, it is highly 374 
stereotyped and always in sync with spike times. Therefore it can seriously bias analyses which look at 375 
spike-LFP temporal relationships, as we show in the main text.  376 

Supplementary Figure 4: Necessity of smoothness assumption in a simulation 377 
A) STA of despiked wideband signal under an assumption of smoothness and without this assumption. 378 
Note the prominent artifact around 0 without the assumption of smoothness. The STA of the signal 379 
uncorrupted by spikes is shown for comparison B) STA of smoothed despiked wideband signal under an 380 
assumption of smoothness and without this assumption. The artifact around 0 can masquerade as a 381 
legitimate feature of the spike-LFP relationship. C) spike waveform recovered by the model under an 382 
assumption of smoothness and without the assumption. D) difference of the two spike waveforms. The 383 
two recovered spike waveforms differ mostly by DC, linear and quadratic trends, confirming the 384 
intuition that with the smoothness assumption the low-frequency components in the spike waveform 385 
are now correctly attributed to the LFP. 386 

Supplementary Figure 5: Choice of ܏ 387 ܏ is constrained to be a low-complexity parametric function. It should match the PSD of the wideband 388 
signal in the range of 1 to 150 Hz. At higher frequencies, ܏ can undershoot the PSD of the wideband 389 
signal; much of the power at these frequencies is attributable to noise and spikes. 390 

Supplementary Figure 6: Chunking procedure 391 
In the chunking procedure, the signal is split into overlapping chunks (top). For each chunk, a composite 392 
signal is formed by the addition of a windowed signal and time-reversed version of this signal windowed 393 
with a complementary window. The composite signal is fed into the despiking algorithm. The recovered 394 
signal chunk is then windowed through a synthesis window. These windowed despiked chunks are 395 
added together to recover the complete signal. The recovery windows add up to 1 at every point in 396 
time. 397 

  398 
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