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Neurons in the medial superior temporal (MST) area of the primate
visual cortex respond selectively to complex motion patterns de-
fined by expansion, rotation, and deformation. Consequently they
are often hypothesized to be involved in important behavioral
functions, such as encoding the velocities of moving objects and
surfaces relative to the observer. However, the computations un-
derlying such selectivity are unknown. In this work we have
developed a unique, naturalistic motion stimulus and used it to
probe the complex selectivity of MST neurons. The resulting data
were then used to estimate the properties of the feed-forward
inputs to each neuron. This analysis yielded models that success-
fully accounted for much of the observed stimulus selectivity, pro-
vided that the inputs were combined via a nonlinear integration
mechanism that approximates a multiplicative interaction among
MST inputs. In simulations we found that this type of integration
has the functional role of improving estimates of the 3D velocity
of moving objects. As this computation is of general utility for
detecting complex stimulus features, we suggest that it may rep-
resent a fundamental aspect of hierarchical sensory processing.

receptive field | optic flow

In the early stages of the primate visual system the receptive
fields of neurons can be readily estimated from the responses

to simple stimuli such as spots, bars, and gratings or even by hand
mapping (1–3). However, for neurons farther along the visual
pathways, the relationship between stimulus input and neuronal
output is often far from obvious, particularly in areas that re-
spond to complex stimuli such as faces, objects, or optic flow
patterns (4–7). Uncovering this relationship is crucial for un-
derstanding the computations that underlie important behavioral
functions such as object recognition and navigation.
One well-known example of complex cortical processing is the

range of selectivities found in the medial superior temporal
(MST) area of the primate visual cortex. Previous work has
shown that MST neurons are highly selective for visual stimuli
composed of combinations of motion patterns such as expansion,
deformation, translation, and rotation (8–12). Although this se-
lectivity has been documented many times over the last 25 y, very
little is known about the computations by which it is derived. One
prevalent hypothesis is that the selectivity of MST neurons is
determined by specific strategies used by the brain to calculate
one’s direction of motion, or heading, through the world (13–15).
In these models, heading is computed by combining the output
of detectors tuned to specific motion patterns, and these patterns
are reflected in the internal structure of an MST neuron’s
receptive field.
Although this hierarchical account of MST selectivity is

appealingly simple, it has been difficult to confirm experi-
mentally. Indeed previous studies have concluded that MST
responses to complex stimuli often cannot be predicted, even
qualitatively, from their responses to simple ones (7–9, 16).
For example, a recent paper by Yu et al. (7) found that MST
receptive field substructure failed to account for the response
patterns of MST neurons to combinations of motions. This
result led the authors to speculate that highly complex inter-

actions must occur among MST inputs, perhaps involving
specific wiring of dendritic compartments. Such findings call
into question the simple hierarchical scheme that has been at
the heart of most previous models.
In this work we have examined the hierarchical nature of MST

processing, using a unique experimental stimulus and a rigorous
computational framework. Specifically, we have developed a vi-
sual stimulus that efficiently and thoroughly explores the space of
complex motion stimuli and used the resulting data to test MST
models with different structures. We find that the most suc-
cessful models take into account the specific properties of MST’s
most proximal source of afferent input, the middle temporal
(MT) area (17–19). Furthermore, we find that such hierarchical
models are capable of capturing all of the main features of MST
stimulus selectivity, provided that a particular style of nonlinear
integration is used to transform MT inputs into MST outputs.
We show that this mechanism is consistent with the known
properties of cortical neurons and that it can be expressed in
a simple mathematical form. Finally, we demonstrate in simu-
lations that this type of integration is useful for extracting the 3D
velocity of objects relative to the observer, as it provides strong
tuning for velocity with little dependence on other stimulus
features. This work therefore provides quantitative validation of
a number of existing notions about MST function, while sup-
plying a crucial element (nonlinear integration) that has been
previously missing.

Results
MST Neurons Are Tuned to Complex Optic Flow. We recorded from
61 neurons in area MST of two awake, fixating macaque mon-
keys. In most cases we first obtained an estimate of the neuron’s
selectivity for optic flow by measuring responses to the tuning
curve stimuli depicted in Fig. 1A. For a given position in space,
24 tuning curve stimuli were presented, with 8 stimuli corre-
sponding to translation (motion in a single direction), 8 corre-
sponding to spirals (including expansion, contraction, rotation,
and their intermediates), and 8 corresponding to deformation
(expansion along one axis and contraction along the other).
These tuning curve stimuli span the space of first-order optic
flow patterns and have proved useful in characterizing optic flow
selectivity in the dorsal visual stream (11, 20). These 24 tuning
curve stimuli were presented at nine positions lying on a 3 × 3
rectangular grid that spanned most of the central 50° of the
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visual field, allowing us to examine the positional invariance of
the selectivity (21).
Fig. 1A shows the responses of an example MST cell to the 24

optic flow stimuli when they were displayed in the lower-middle
part of the 3 × 3 grid. Here the cell preferred downward-trans-
lational motion (Fig. 1A, Left), contracting counterclockwise
spirals (Fig. 1A, Center), and deformation with a horizontal di-
vergent axis (Fig. 1A, Right). These responses are replotted in
Fig. 1B as tuning mosaics, which are color-coded versions of the
standard direction tuning curves. Each mosaic shows the re-
sponse of a cell to 8 stimuli of a type at a given position in the
receptive field, with red representing responses above baseline
firing rate and blue responses below baseline. The most satu-
rated red corresponds to maximal firing rate across all stimuli,
whereas white corresponds to the median firing rate; tuning
mosaics are not otherwise normalized. The mosaics outlined in
green correspond to the tuning curves shown in Fig. 1A.
The translation mosaics (Fig. 1B, Left) indicate that this cell

shows a preference for downward motion in the bottom and
center portions of the screen. The spiral mosaics (Fig. 1B, Cen-
ter) show that the cell’s spiral tuning shifts from position to po-
sition, with the strongest preference being for expansion motion
at the top and center of the visual field. A weaker response to
contraction can be seen near the bottom of the visual field. The
deformation mosaics (Fig. 1B, Right) show that tuning for de-
formation motion also varies from position to position. This cell

therefore shows selectivity for a range of stimuli and a strong
dependence of stimulus preference on spatial position.
In contrast, Fig. 1C shows a cell with tuning for expansion (Fig.

1C, Center) that is nearly invariant with spatial position. This
second cell’s translation tuning (Fig. 1C, Left) is similar to that of
the cell in Fig. 1B, indicating that there is no obvious relationship
between the tuning for translation and that for spirals. Thus, our
results, in agreement with previous reports (8, 9), suggest that
MST neurons exhibit complex tuning in a high-dimensional
stimulus space. To explore this tuning in quantitative detail, we
developed a stimulus that sampled the space of optic flow far
more thoroughly than the tuning curve stimulus described above.
Specifically, we used a continuous optic flow stimulus that con-
sisted of continuously evolving, random combinations of trans-
lation, spirals, and deformation stimuli, each of which elicited
robust responses from most MST neurons (Movie S1). This ap-
proach typically allowed us to measure responses to several
thousand optic flow stimuli.
On the basis of the responses to this rich repertoire of stimuli,

we sought to develop a quantitative account of the neuronal
computations that lead to the variety and complexity of neuronal
responses exemplified in Fig. 1. Our approach was to describe
each neuron’s responses using several mathematical models, all
of which shared the same basic structure. In the first stage, the
input stimulus is processed by a number of subunits, each of
which is selective for motion in a part of the visual field. The
output of these subunits is fed to the simulated MST neuron,
which sums its inputs and translates the result into a predicted
firing rate through an expansive static nonlinearity. Such linear–
nonlinear cascade models have strong theoretical foundations
that have been described elsewhere (22, 23).
For each MST neuron we optimized the choice of subunits to

maximize the quality of the fit to the continuous optic flow data
(Methods). We controlled the complexity of the model by cross-
validation and evaluated its performance by predicting a neu-
ron’s response to the tuning curve stimuli, on which the model
was not trained. As a check on the validity of our approach and
its implementation, we verified that our methods converge to
correct estimates of receptive fields in simulated data (SI Ap-
pendix, SI Methods and Fig. S1). As described in detail below, our
approach allowed us to examine particular hypotheses about
neuronal computation in MST.

Hierarchical Processing Partially Accounts for MST Responses. The
simplest model that could in principle account for the data
shown in Fig. 1 involves a computation in which MST neurons
linearly compare the visual stimulus to an internal template, with
the output reflecting the degree of match. This linear model is
directly analogous to the linear spatiotemporal receptive field
models that have been used in the luminance domain to study
early visual areas (2, 24). Furthermore, it is mathematically
tractable, and previous modeling work has shown promise in
capturing the complex tuning properties seen in MST (25, 26).
We found, however, that whereas such a model can capture
some preference to translation, it is unable to capture the more
complex selectivities of MST neurons (SI Appendix, SI Methods
and Fig. S2).
This result may be expected, as MST neurons have no direct

access to the visual stimulus, instead receiving the bulk of their
input from MT neurons, which are tuned for both direction and
speed (17, 27). Thus, a more promising model involves a com-
putation in which MST neurons linearly sum the output of ap-
propriately tuned MT subunits. Indeed this idea is implicit in
many existing MST models (9, 13, 14, 16, 28). We thus developed
a hierarchical model in which the input stimulus is first trans-
formed into the outputs of a population of MT-like subunits
tuned for stimulus direction and speed (Fig. 2A). The mathe-
matical form of these subunits was chosen to provide an accurate
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Fig. 1. Tuning of MST neurons for complex optic flow. (A) Tuning curves for
a single MST neuron to visual motion composed of translation (Left), spirals
(Center), and deformation (Right). Stimuli were presented at one position on
a 3 × 3 grid centered on the fovea. (B) Tuning mosaics, in which large
responses are represented by red colors, small responses by blue, and me-
dian responses by white. Each mosaic captures the tuning for one of the
stimulus types shown in A at nine positions in the visual field. The mosaics
highlighted in green correspond to the tuning curves shown in A. This cell
consistently preferred downward translation (Left) and tuning for spirals
(Center) and deformation (Right) varied across positions. (C) Tuning mosaics
for a second example cell. This cell consistently preferred downward trans-
lation (Left) and expansion (Center) at most spatial positions.

2 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.1115685109 Mineault et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115685109/-/DCSupplemental/sm01.mov
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115685109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115685109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115685109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115685109/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1115685109


and parsimonious account of the responses of real MT cells.
Specifically, MT subunits had receptive fields that were smaller
than those found in MST and responses that were tuned for
direction and speed, with bandwidths matching those found in
real MT cells (SI Appendix, SI Methods).
Fig. 2B shows the predicted tuning curves under this hierar-

chical model for the example cell shown in Fig. 1B. In this case
the model captures the tuning, including the general preference
for downward translation (Fig. 2B, Left) and the variety of
selectivities for spiral and deformation motion (Fig. 2B, Center
and Right). The quality of the prediction can be assessed using
�R2, the proportion of explainable variance accounted for (29)
(Methods). For this example cell, �R2 ¼ 0:55, which compares
favorably with results reported previously in other areas (30–33).
Across the MST population, however, the model fared consid-
erably worse, with median �R2 ¼ 0:31. Indeed we found some
cells with tuning characteristics that could not be explained even
qualitatively with this model structure, and the neuron originally
shown in Fig. 1C is an example of this category. Fig. 2C shows
that, whereas the hierarchical model successfully captures this
cell’s tuning for translation (Fig. 2C, Left), it consistently
underestimates the responses to spiral stimuli (Fig. 2C, Center).
This pattern of errors in the hierarchical model was common
across our population of cells, being present in 58% of the cells
(21/36, stimulus class comparisons, P < 0.001) (Methods). Thus,
we conclude that, although a hierarchical model can account for

some MST tuning properties, there is strong evidence that such
a model responds too strongly to translation and too weakly to
complex optic flow.

Nonlinear Integration Is Necessary to Explain MST Stimulus
Selectivity. Stated in more general terms, the stimulus selectiv-
ity of the hierarchical MST model is too similar to that of its
inputs, and there appears to be no spatial arrangement of inputs
that can bring this model into closer agreement with the data.
This result suggests that MST selectivity requires a nonlinear
operation that transforms the output of one area before sum-
mation by the next (2, 18, 34); indeed such a mechanism has
been proposed in other contexts throughout the primate visual
system (3, 5, 30, 35). We therefore examined the consequences
of adding a nonlinearity (Fig. 3A) that shaped the output of each
MT subunit. In particular, we added a flexible, static non-
linearity, represented by a single free parameter β, that could be
either compressive (β < 1) or expansive (β > 1) (Methods). For
each MST cell the nonlinearity was constrained to be identical
across subunits.
Remarkably, this minimal change to the hierarchical model

structure yielded far better fits to the data (Fig. 3B) for the ex-
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Fig. 2. Performance of the linear hierarchical model. (A) The stimulus was
processed by groups of MT-like filters (only two groups shown for clarity),
which could vary in preferred direction, spatial position, and speed. The
outputs of these filters were weighted, summed, and nonlinearly transduced
to a firing rate. (B) Predicted tuning mosaics for the same cell as in Fig. 1B
under the hierarchical model. The hierarchical model correctly captures the
optic flow tuning of this cell, including the preferences for spiral motion
(Center). (C) Same as in B but for the example cell shown in Fig. 1C. The
hierarchical model fails to capture this cell’s tuning to complex optic flow
(spirals and deformations).
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Fig. 3. Performance of the hierarchical model with nonlinear integration. (A)
The stimulus was processed by groups of MT-like filters. The output of these
filters was passed through a nonlinearity and then weighted, summed, and
transduced to a firing rate. For each MST cell, the nonlinearity could vary from
compressive to expansive and was identical across all subunits. (B) Predicted
tuning mosaics for the same cell as in Fig. 1C under the nonlinear integration
model. This model accurately captures the tuning and relative response levels
of this cell to translation and spirals. (C) Quality of tuning curve predictions for
the hierarchical model with and without nonlinear integration. The nonlinear
integration model improves performance in 75% of the tested cells.
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pansion-selective cell originally presented in Fig. 1C. In partic-
ular, the nonlinear integration model showed enhanced responses
to optic flow stimuli such as expansion and rotation, while
maintaining strong tuning for translation, with an overall in-
crease in the goodness-of-fit from an �R2 = 0.41–0.70. This im-
proved fit to the data was not a trivial consequence of the
additional free parameter, as the model was evaluated with
a validation procedure (defined in Methods) that was robust to
the overall model complexity. Fig. 3C shows that predictions
improved for the majority (75%) of MST cells from which we
recorded, with the median goodness-of-fit improving from 0.31
to 0.50. These improvements are also reflected in the cross-val-
idated goodness-of-fit measured with the continuous optic flow
stimulus, shown in SI Appendix, Fig. S3B. Similar results were
obtained if we allowed each subunit to have its own nonlinearity
(Table 1, unrestricted nonlinear model) (SI Appendix, SI Meth-
ods), suggesting that the shared nonlinearity is sufficient.
In principle there are two ways in which the introduction of

nonlinear integration could improve the fit of the model to the
data. The first would be to increase the overall level of responses
to spiral and deformation stimuli relative to translation stimuli,
while preserving the shape of tuning curves within stimulus cat-
egories. This modulation would compensate for the above-
mentioned tendency of the hierarchical model to underestimate
firing rates for spiral and deformation stimuli. The second would
be to improve the ability of the model to match the shapes of the
tuning curves, apart from overall response levels for individual
stimulus classes. To untangle these two factors, we performed an
additional analysis after first normalizing the responses within
each stimulus class (translation, spirals, and deformation). SI
Appendix, Fig. S3C shows that the nonlinear integration model
still improves the quality of predictions in 78% (28/36) of the
cells (stimulus class comparisons; Methods). This result indicates
that the nonlinear integration model captures aspects of the
MST responses that cannot be related simply to stimulus-specific
level modulation. Rather the nonlinear integration mechanism is
necessary for producing the stimulus selectivity seen in MST
responses to optic flow.
We also verified that the success of the model was not influ-

enced by errors in the centering of the stimuli, as stimulus po-
sition profoundly affects MST stimulus selectivity (20). We
estimated receptive field centers from the tuning curve stimuli
and compared the quality of model fits for recordings in which
the stimuli were well centered (within 7° of the centers) and
those in which the centering was worse (12.4° on average). The
addition of the nonlinearity improved the model fits for both
groups of neurons (15/19 in the first group, 12/17 for the second
group), indicating that our conclusions about nonlinear in-
tegration are robust to stimulus centering. Indeed the results

were noticeably better when the stimulus was well centered
(median �R2 = 0.56 for well-centered cases and 0.36 when the
centering was worse), which indicates that the model captures
the bulk of the selectivity in the center of the receptive field.

Substructure of MST Receptive Fields. The success of the nonlinear
modeling approach allowed us to examine the types of subunit
arrangements that were recovered for each neuron. Fig. 4A
shows the subunits that contribute most critically to the highly
nonlinear neuron shown in Fig. 3B (SI Appendix, SI Methods).
Each circle in Fig. 4A corresponds to the position and size of
a single MT subunit’s receptive field; the direction of each arrow
indicates the preferred direction of the subunit; the opacity of
the color indicates the weighting; and the color denotes the sign
of the contribution, with red being excitatory and blue being
inhibitory. The results of this analysis show that this MST neu-
ron’s response is largely explained by the selectivity of subunits
tuned to downward-left motion in the bottom left portion of the
visual field and downward-right motion in the bottom right. This
result is consistent with this cell’s tuning for both expansion and
downward motion.
For some MST cells the subunit nonlinearity was less critical,

and an example of this type of receptive field is illustrated in Fig.
4B (same cell as in Fig. 1B). Here the cell’s receptive field is
summarized by a single downward-tuned, centrally located sub-
unit. This cell’s nonlinearity had an exponent of 0.6, closer to
unity than most neurons in the MST sample (see below for
details); the quality of the prediction went from 0.55 to 0.62 with
the additional nonlinearity, a comparatively small change. Thus,
this MST cell’s response properties were similar to those found
in MT.
The receptive fields of three more MST neurons are shown in

Fig. 4 C–E. Like the cell originally shown in Fig. 1C, these three
cells are selective for expansion at multiple positions in the visual
field. However, despite the similarity in the tuning, the most
critical subunits of these neurons revealed a variety of receptive
field substructures. In particular, the position and relative mo-
tion directions of the subunits varied substantially from cell to
cell, suggesting that these MST cells are not detectors of ex-
pansion per se. Rather, the selectivity of these cells appears to be
captured by nonlinear combinations of a small number of ex-
citatory and inhibitory inputs,. Estimated time filters and addi-
tional examples of receptive fields are shown in SI Appendix, Fig.
S6, and the tuning mosaics and predictions for more MST cells
are shown in SI Appendix, Fig. S7.
As can be seen in Fig. 4, another prominent feature of MST

receptive fields is the spatial overlap of the subunits. Although
differences in direction and speed preference tended to increase
with spatial distance between subunits (SI Appendix, Fig. S8 D

Table 1. Summary of quality of fits of all models considered

Model
Median LL/s, continuous stimulus (median %
difference relative to nonlinear MT model)

Median R2, tuning curve stimuli (median %
difference relative to nonlinear MT model)

Linear 0.38 (−54) 0.19 (−48)
MT 1.11 (−9) 0.31 (−21)
Nonlinear MT 1.23 0.50
Nonlinear MT (unrestricted) 1.23 (2) 0.45 (−6)
Divisive surround 1.20 (4) 0.48 (−1)
Asymmetric surround 1.12 (−2) 0.34 (−15)
Nonlinear asymmetric surround 1.22 (5) 0.45 (0)
Subtractive surround 1.09 (−3) 0.36 (−15)
Nonlinear subtractive surround 1.22 (4) 0.47 (−1)

Goodness-of-fit for continuous stimulus is defined as cross-validated log-likelihood accounted for per second of data. Quoted percentage values are the
median ratio of goodness-of-fit for target model divided by goodness-of-fit for nonlinear MT model. Note that the ratio of medians is not necessarily equal to
the median of individual ratios. LL, log-likelihood.
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and E), there was also substantial variation on spatial scales
smaller than a single subunit (e.g., Fig. 4C). This variation may
be important for estimating optic flow quantities such as motion
parallax, in which multiple motion vectors occur at nearby spatial
locations. More generally, the complex selectivity observed here
is likely to be useful in natural contexts, in which motion patterns
are determined in part by the structure of the surrounding en-
vironment and hence are not constrained to resemble the ca-
nonical flow fields typically used experimentally. Overall these
results parallel the finding that selectivity for analogous stimuli
(e.g., non-Cartesian gratings) in the ventral stream of the visual
cortex is related to selectivity for combinations of orientations or
other features (4, 30, 36).
As suggested by Fig. 4, the number of subunits recovered by

the model differed from cell to cell. This variability is summa-
rized in Fig. 4F, which shows that the number of subunits con-
tributing significantly to individual MST neurons ranged from 2
to 45, with a median value of 9 (SI Appendix, SI Methods). Most
of these subunits were excitatory, with a median proportion of
excitatory subunits of 81% across our population of cells. The
remaining inhibitory subunits can be interpreted either as re-
moval of excitation from tonically active MT cells or as indirect
MT influences via MST interneurons, as interareal projections
are almost exclusively excitatory. These conclusions are of course
contingent upon the assumptions underlying our modeling ap-
proach. However, for the most part these assumptions are quite
conservative, and, as we show in the next section, relaxing them
does not change the main results.

Importance of Compressive Nonlinearities Across the MST Population.
Although Fig. 4 shows that the receptive field substructure varied
substantially from cell to cell, we found that the shape of the
nonlinearity recovered by the model was highly consistent across
neurons. This result is illustrated in Fig. 5A, which plots the
distribution of the parameter β for all of the cells in our MST

population. The distribution is heavily skewed toward values <1, as
shown earlier in individual examples, suggesting that a compressive
input nonlinearity is an important property of MST neurons.

Influence of Surround Suppression. Given the importance of the
compressive nonlinearity in accounting for the MST data, we
next sought to relate it to potential physiological mechanisms.
One important candidate mechanism is surround suppression at
the level of MT (37–40). Surround suppression attenuates the
responses of MT neurons to pure translation, and so it might
account for the above-mentioned observation that the com-
pressive nonlinearity decreases the relative influence of trans-
lation on MST responses (Fig. 3B). We therefore extended the
model output for each MT subunit to include divisive modula-
tion (41) by a suppressive field that could vary in terms of its
spatial extent, its tuning to motion, and its strength. We defined
these quantities as free parameters and allowed the model to
specify which characteristics best fit the data (Fig. 5B) (SI Ap-
pendix, SI Methods).
The results of these simulations indicate that in most cases the

optimal surround was well tuned for motion direction and, sur-
prisingly, that it covered a spatial extent similar to that of each
subunit’s excitatory receptive field (SI Appendix, Fig. S4A). In
other words the suppressive influence recovered by the model
was typically identical to the excitatory influence, so that stimuli
that activated a subunit also limited its output. This type of
suppressive mechanism is mathematically indistinguishable from
a pure compressive nonlinearity. Indeed the full center-surround
model yielded little or no improvement in the quality of the fits
relative to the simple nonlinear integration model (SI Appendix,
Fig. S4B, and Table 1). Similar results were obtained if we used
spatially asymmetric surrounds (40), symmetric surrounds that
interacted with the centers via subtraction (34, 38) rather than
division, and surrounds that had their own output nonlinearities
(SI Appendix, SI Methods). Although these models generally
performed better than the linear integration model, none con-
sistently outperformed the one-parameter nonlinear integration
model. These results are summarized in Table 1.
Of course these results do not contradict the important role

for MT surrounds in motion processing (38, 42), but they do
suggest that the contribution of these surrounds to MST optic
flow selectivity might be fairly subtle; we return to this issue in
the Discussion.

Computational Properties of Nonlinear Motion Integration. In-
tuitively the compressive nonlinearity has a straightforward in-
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nonlinear integration model. Red represents excitatory input, blue inhibitory
input, opacity the magnitude of the weight of the subunit, and the direction
of the arrow the preferred direction of the subunit. This cell’s tuning for
downward motion and expansion is explained by downward-left–tuned
subunits in the lower left portion of the visual field and downward-right–
tuned subunits in the lower right. (B) Substructure of example cell shown in
Fig. 1B. This cell’s receptive field was composed of a single, downward-left–
tuned subunit. (C–E) The most critical subunits for three expansion-tuned
cells. Whereas these cells and the one presented in Fig. 5A can all be de-
scribed as expansion tuned, they show a diversity of receptive field
arrangements. (F) Histogram of number of subunits found by the visuali-
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terpretation: As the input to an individual subunit increases, the
output saturates quickly, and as a consequence the MST cell
responds best to stimuli that drive many different subunits, even
if each subunit is activated weakly. This mechanism thus favors
stimuli, such as complex motion, that activate many subunits.
This operation is similar to multiplicative subunit interactions

described in other contexts (43–46). That is, the compressive
nonlinearity is similar to a logarithm (SI Appendix, Fig. S3A), and
thus the combination of compressive input nonlinearities and
expansive output nonlinearity approximates multiplication
through the identity a·b= exp(log a+ log b). Indeed, we verified
in additional simulations that explicit multiplicative interactions
between subunits outperformed models of similar complexity in
79% of the MST cells (SI Appendix, SI Methods and Fig. S5).
To quantitatively examine the functional utility of this mech-

anism we used optimal linear decoding to measure the ability of
area MST to represent stimulus information, with and without
the nonlinear integration mechanism in place. Specifically, we
used our model MST cells to estimate the responses to various
stimuli and then trained a simple decoding algorithm to extract
various quantities from the population response (Fig. 6A). This
method provides insight into the type of information that would
be available to a brain region that had access to the output of the
MST population (47, 48).
In our simulations the model MST population responded to

a series of discrete objects moving in various directions and
speeds, in various positions in the visual field (Fig. 6B). The goal
of the decoder was to recover the different components of each
object’s velocity, independently of its position in visual space.
Although we have not explored more complex situations in-
volving different visual environments and observer motion, the
position-invariant readout of 3D object velocity is necessary for
common behavioral situations, such as vergence eye movement
control (49, 50) and estimation of time to contact (51).

The results of this simulation (Fig. 6C) show that the model
with nonlinear integration of MT inputs (Fig. 6C, black bars)
outperforms the linear hierarchical model (Fig. 6C, gray bars) in
reconstructing velocity in all three dimensions. The difference is
especially large (a 60% drop in reconstruction error) in the case
of the z-component of the velocity, which is defined by expansion
optic flow. As mentioned above, the nonlinear integration
approximates a multiplicative operation that renders the model
less sensitive to the individual components of expansion stimuli,
which are ambiguous with respect to the speed of motion in
depth. This result suggests that the nonlinear aspects of MST
motion encoding are useful for functions that rely heavily on
measurement of motion in depth and for which retinal position is
relatively unimportant (Discussion).

Discussion
Hierarchical Encoding of Visual Stimuli. In this work we have found
that neurons in area MST can be effectively characterized by
a hierarchical model that takes into account the properties of
neurons in MT. An important result from this work is that cells
with similar stimulus selectivity, as assessed by relatively low-di-
mensional tuning curve stimuli, can have subunit structures that
differ significantly (Fig. 4). Although we cannot say that the
subunits recovered by our model correspond exactly to the an-
atomical inputs received by each MST neuron, they do represent
an optimal estimate under a conservative set of assumptions
about MT responses. The formidable challenges associated with
a direct characterization of the feed-forward inputs to the
extrastriate cortex (52) suggest that a model-based approach is
particularly valuable.
In addition to a plausible subunit representation, the model

requires a nonlinear integration mechanism, which for most neu-
rons is compressive (Fig. 5). Functionally, the compressive non-
linearity appears to be useful primarily for implementing a mul-
tiplicative operation similar to that seen in other visual cortical
areas (5) and in sensory processing in other species (43–45). A
similar approach has recently been proposed to account for the
pattern and speed selectivity of MT neurons (53) and for shape
selectivity in V4 (30). Indeed a similar idea was suggested as
a qualitative account of optic flow tuning inMST (9). To the extent
that the tuning properties found in different brain regions share the
same nonlinear integration mechanism, one might expect to find
that they share similar temporal dynamics (54, 55) and contrast
dependencies (56); these predictions will be tested in future work.
In a complementary analysis, we tested the hypothesis that the

compressive effect could be a result of center-surround inter-
actions (37–40). We tested a wide variety of interaction types
(Table 1), with the result that no mechanism consistently out-
performed the simple nonlinear model. Moreover, the surrounds
recovered by the model were typically the same size as the
centers, suggesting that a spatially extended surround is not
necessary to account for MST optic flow selectivity. A likely
functional rationale for these surrounds is in performing motion
segmentation and shape from motion (42).
Regardless of its precise functional interpretation, the com-

pressive nonlinear operation could plausibly be implemented
through inhibitory interactions among MT neurons with similar
receptive field positions and stimulus selectivities; a similar “self-
normalization” operation at the level of V1 has been posited to
be of primary importance in explaining selectivity in MT cells
(18, 34, 57). An alternate explanation is synaptic depression at
the level of the MT–MST synapse (58). Both mechanisms are
equivalent to a compressive static nonlinearity for slowly varying
inputs (59). However, self-normalization would have visible
effects on the tuning of MT cells, including bandwidth broad-
ening. Given the current knowledge of MT, synaptic depression
appears somewhat more plausible and would reconcile our use of
a compressive nonlinearity with previous work showing that ex-
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Fig. 6. Role of nonlinear integration revealed by population decoding. (A)
In a decoding simulation, stimuli were processed by a population of MST
model cells estimated from the recorded data. The goal of the linear de-
coder (Top) was to deduce physical parameters of the stimulus on the basis
of the output of the MST population. (B) Example stimuli used in the object-
decoding simulation corresponding to motion of an object in three dimen-
sions. (C) Performance of the decoder based on input from the hierarchical
model population with (black bars) and without (gray bars) nonlinear in-
tegration. Results are quantified as the mean error relative to the range
tested; smaller values indicate better performance. Error bars indicate 1 SD
from the mean, determined through a resampling procedure (Methods). The
sensitivity of the nonlinear integration mechanisms to combinations of
inputs facilitates the decoding of object velocity on the basis of the output
of the MST population.

6 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.1115685109 Mineault et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115685109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115685109/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1115685109


pansive output nonlinearities are sufficient for modeling the MT
output (18). On the other hand, our results are unlikely to arise
from contrast normalization or untuned surround suppression at
the level of MT (SI Appendix, Fig. S4A).
An alternative explanation for the compressive effect is a form

of normalization among MST neurons. A number of different
nonlinear tuning operations can be performed through the in-
terplay of feed-forward excitation and divisive normalization
(60), including multiplicative input interactions. Although it is
reasonable to assume that normalization shapes MST responses
given its important role in areas V1 and MT (18, 34, 41, 61), the
nature of the normalization pool in MST is unexplored, and as
a result it would be difficult to incorporate into our model.
Previous MST models include those that are linear in the

velocity domain (25, 26) and those that derive their selectivity
primarily from the spatial arrangement of MT-like inputs (11, 13,
14, 28), as well as other more informal proposals (7, 9, 16). Each
of these models is capable of reproducing certain qualitative
aspects of the MST data, but to date there has been no statistical
comparison of different model classes. Most recently, Yu et al.
(7) attempted to estimate MST receptive field substructure by
stimulating each cell with a small set of 52 canonical optic flow
patterns. These authors concluded that the failure of the
resulting receptive field models to account for tuning to complex
optic flow stimuli implied that MST stimulus selectivity might
result from an unknown mechanism that is sensitive to specific
pairwise interactions within MST receptive fields.
Although this idea is of course possible, there are two main

methodological shortcomings in the Yu et al. (7) work. First, the
use of a small stimulus set permitted very limited inference power;
our results suggest that thousands of different stimuli are necessary
to estimate MST receptive field substructure. Second, the model-
fitting approach implemented by the authors involved a compara-
ble number of data points and free parameters and hence would be
unlikely to generalize to novel stimuli even with a sufficiently rich
training dataset. We therefore suggest that the previously reported
lack of correspondence between receptive substructure and stim-
ulus selectivity is not due to any intrinsic feature ofMST, but rather
to the stimulus and modeling methods used in that study.

Decoding of MST Population Activity. Functionally, MST neurons
are likely to be involved in navigation (14, 62, 63). Indeed, many
previous MST models have assumed that MST receptive fields
are arranged to compute heading angle during self-motion (13,
14). However, our nonlinear integration model suggests that the
properties of MST neurons reflect a more general mechanism
that allows MST to participate both in heading and in 3D ve-
locity estimation. Indeed, in naturalistic scenes, heading and
object velocity often cannot be estimated separately (64).
In addition to heading, MST is likely involved in controlling

tracking eye movements that maintain fixation on moving objects
(50). Such eye movements require accurate estimates of motion
direction, and our simulation results (Fig. 6C) suggest that the
estimation of 3D object velocity relies critically on the computa-
tional properties we have identified in MST. Specifically, whereas
frontoparallel motion can be recovered with reasonable accuracy
by the MT population, accurate calculation of the velocity of
motion in depth requires the nonlinear integration mechanism of
the kind used by MST neurons. Consistent with this idea, previous
work has shown that MST is important for estimating object ve-
locity (49) and lesions of MST impair vergence movements (50).
Our simulations (Fig. 6C) show that a position-independent

estimate of 3D velocity can be readily extracted from the output
of the MST population and that nonlinear integration improves
such estimates substantially. Thus, our findings indicate that
nonlinear integration allows MST to form a distributed repre-
sentation of 3D objects that supports a wide range of behaviors
through a simple decoding mechanism (47, 48).

Methods
Electrophysiological Recordings. Two rhesus macaque monkeys took part in
the experiments. Both underwent a sterile surgical procedure to implant
a titanium headpost and a plastic recording cylinder. Following recovery the
monkeys were seated in a custom primate chair (Crist Instruments) and
trained to fixate on a small red spot on a computer monitor in return for
a liquid reward. Eye position was monitored at 200 Hz with an infrared
camera (SR Research) and required to be within 2° of the fixation point for
the reward to be dispensed. All aspects of the experiments were approved
by the Animal Care Committee of the Montreal Neurological Institute and
were conducted in compliance with regulations established by the Canadian
Council on Animal Care.

We recorded from well-isolated single neurons in the MST area. Single
waveformswere sorted on-line and then resorted off-line, using spike-sorting
software (Plexon). MST was identified on the basis of anatomical magnetic
resonance imaging (MRI) scans and its position relative to MT (just past MT
during a posterior approach to the superior temporal sulcus). Most of the
neurons from which we recorded had large receptive fields that extended
into the ipsilateral visual field and that responded to expansion and rotation
stimuli in addition to translation. These tuning properties suggest that most
of our recordings were from the dorsal, rather than the ventral, portion of
MST, but this has not been verified histologically.

Procedure and Visual Stimuli.Uponencounteringawell-isolatedMSTneuron,we
performedapreliminary receptivefieldmappingwithflashedbarsanddotfields.
For any neuron that was visually responsive, we characterized its responses in
terms of tuning curves for three opticflow types: translation, expansion/rotation
(spirals), and deformation (eight measurements per optic flow type; see SI Ap-
pendix, SIMethods forequations). Random-dot stimuliwerepresented ina24°or
a 30° aperture at nine different spatial positions on a 3 × 3 grid with adjacent
center positions 12° or 15° apart. The grid was placed over the approximate
center of the receptive field as determined by preliminary hand mapping.

To explore the space of optic flow stimuli more thoroughly, we also de-
veloped a novel continuous optic flow stimulus consisting of dots moving
according to a continuously evolving velocity field generated by random
combinations of six optic flow dimensions (see SI Appendix, SI Methods for
equations). Dots moving according to this velocity field were presented in
a circular aperture 24° or 30° wide, which moved slowly around the screen
(Movie S1). The stimulus was presented for 6–10 min.

In all cases, dots were 0.1° in diameter at a contrast of 100% against a dark
background. The screen subtended 104° × 65° of visual angle at a distance of
32 cm. The stimuli were presented at a resolution of 1,920 × 1,200 and
refreshed at frame rates of 60 or 75 Hz. During continuous stimulus pre-
sentation, the animal was rewarded after maintaining fixation for 1 s.

Models. To understand the computations underlying MST optic flow selec-
tivity, we fitted the continuous optic flow data from each cell to models with
various types of subunits. In all cases we first binned the spike trains at 50 ms
resolution and excluded time periods during which more than half of the
stimulus was off the screen or the animal’s gaze deviated >1.5° from the
fixation point, as well as from 100 ms before loss of fixation to 250 ms
following recovery of fixation. This method yielded a series of firing rates,
which we describe as a response vector y. For the model, we assumed that
this response was generated by a Poisson process with rate r, computed
deterministically from the stimulus. The log-likelihood of the model L(y, r) is
then given up to an additive constant (22) by

Lðy; rÞ ¼ logpðyjrÞ ¼ ∑
t
yt logðrtÞ–rt : [1]

We assumed that the firing rate was given by the rectified output of the re-
ceptive field acting on the stimulus, rt = g(ηt). gmust be nonnegative for r to be
meaningful; additional constraints on the derivatives of g are required to yield
a model that is straightforward to optimize (22, 65). We thus chose g ≡ exp.

The spatiotemporal receptive field acted on the stimulus to yield
a response ηt:

ηt ¼ c þ∑
τ
Fðρðt; x; yÞ; θðt; x; yÞÞwðt − τÞ: [2]

Here, F(ρ, θ) is a nonlinear spatial filter that acts on the optic flow stimulus,
which is described by the local motion speed ρ(t, x, y) and direction θ(t, x, y). c
is a constant offset. We sampled the stimulus at a spatial resolution of 24 ×
24 samples, generally covering from 48° to 60° of visual angle. The temporal
filterw(τ) was assumed to last five time steps, spanning from −50 ms to −250
ms. This formulation embodies an assumption of separable, linear temporal
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processing, which is supported by earlier studies of the temporal behavior of
MST neurons (66).*

The nonlinear spatial filter F(ρ, θ) was assumed to be given by the sum of
M nonlinear subunits f(ρ, θ, pm), where pm denotes the parameters of the
mth subunit:

Fðρ; θÞ ¼ ∑
M

m¼1
fðρ; θ;pmÞ: [3]

We examined the compatibility of the data with several different models,
each of which was defined by the structure of its subunits.
Hierarchical model. This model embodies the assumption that MST responses
are approximately linear in terms of their feed-forward input from area MT,
which provides one of the strongest projections to MST (27). The tuning of
the modeled subunits is determined by three components. Subunits were
assumed to have log-Gaussian speed tuning with preferred speed pρ:

R
�
ρðx; yÞ;pρ

�
¼ exp

�
−
�
logðρðx; yÞ þ 1Þ−pρ

�2
=2σ2ρ

�

− exp
�
−
�
logðρðx; yÞ þ 1Þ þ pρ

�2
=2σ2ρ

�
:

[4]

Note that a second log-Gaussian is subtracted from the first to constrain the
response to be zero when there is no motion. AlthoughMT cells tuned to low
speeds have robust responses to static stimuli (67), we did not model such
responses, as our stimulus poorly sampled slow speeds. We set the speed
tuning width to σρ = 1, similar to the mode of the distribution of speed
tuning widths reported in MT (68).

The direction tuning of the subunits was given by a Von Mises function
with preferred direction pθ:

Dðθðx; yÞ;pθÞ ¼ expðσθ cosðθðx; yÞ−pθÞÞ− 1: [5]

Thevalue1issubtractedfromtheresult sothatbyconventionastimulusmovingin
adirectionorthogonaltothepreferreddirectionelicitsnoresponse,andastimulus
moving in the nonpreferred direction elicits a negative response; a similar con-
vention was used in previous models of MST (14, 15). The bandwidth parameter
was chosen to be σθ = 2.5, corresponding to a full-width at half-maximum
bandwidth of 86°, similar to the mean value of 83° measured with moving ran-
dom dots reported in ref. 19. Finally, subunits had a Gaussian spatial profile

G
�
x; y;px ;py ;pσ

�
¼ exp

�
−
�
ðx −pxÞ2þ

�
y −py

�2�.
2p2

σ

�
: [6]

The direction, speed, and spatial response of the subunits were combined to
form the response of the subunit:

fðρ; θ;pÞ ¼ pgh
�
∑
xy
R
�
ρðx; yÞ;pρ

�
·Dðθðx; yÞ;pθÞ ·G

�
x; y;px ;py ;pσ

��
: [7]

Here pg denotes the gain of the subunit, and the function h(x) = max(x, 0)
returns the positive part of the response (half-wave rectification).
Hierarchical model with nonlinear integration. This model provides each subunit
with a nonlinearity that exhibits either compressive or expansive behavior
depending on a free parameter (expansive when β > 1, compressive when β <
1). Subunits take the same form as Eq. 7, but with the nonlinearity replaced by
h(x) = max(x, 0)β. This model reduces to the previous model when β = 1. Im-
portantly, β is shared across all subunits for a given model fit. In practice, we
fitted the model for seven different values of β ranging from 0.2 to 1.4 and
selected the optimal β for a cell on the basis of the cross-validated likelihood.

Model Fitting. Estimating the models described above is challenging, as they
contain many free parameters and must be fitted with rather noisy data. To
constrain the parameters and to obtain fits that extrapolate well to novel
data, the fitting procedure must limit the dimensionality of the model. This
dimensionality reduction is typically done by including explicit assumptions
about the parameters (23). A particularly powerful assumption is that a
model is sparse, meaning that most of its parameters are zero (69). In
a neurophysiological context, this corresponds to the assumption that only
a modest number of subunits are driving a given cell, which is consistent
with anatomical and correlation studies of early sensory areas (70, 71).
Models fitted with assumptions of sparseness have proved increasingly
useful in estimating the receptive field properties of high-level neurons (22,

31, 33). We thus used gradient boosting, a stepwise fitting procedure that
introduces an assumption of sparseness (69). The number of free parameters
was limited through fivefold cross-validation (23).

Validation and Accuracy Metrics. For those cells for which the continuous optic
flow stimulus spanned the spatial range of the tuning curve stimulus (36/61),
we predicted the responses to the tuning curve stimuli on the basis of the
continuous optic flow fit. Note that the continuous optic flow stimulus
samples a large, six-dimensional space of optic flow, of which the tuning
curve stimuli comprised a small number of points. Thus, this approach is
a rigorous test of the model’s ability to extrapolate to novel stimuli.

For these simulations we ignored the temporal component of the
responses, instead predicting the total spike count in response to a stimulus.
We allowed the gain and baseline firing rate to be estimated from the data
using standard techniques (65) rather than predicted from the continuous
optic flow stimulus. Given a predicted response r and an observed response
y, the quality of the prediction may be assessed using the standard R2 metric
of variance accounted for:

R2 ¼ VarðyÞ−Varðy− rÞ
VarðyÞ : [8]

In practice the value R2 = 1 cannot be attained, as Var(y − r) for a perfect
prediction is the variance of the noise, which is nonnegligible in physio-
logical measurements. To recover a natural scale we thus used a corrected R2

metric, also known as predictive power (29):

�R
2 ¼ VarðyÞ−Varðy− rÞ

VarðbyÞ : [9]

Here VarðbyÞ is the variance of the unobserved noiseless signal by. The ex-
plainable signal variance VarðbyÞ is estimated from the pattern of disagree-
ment between responses in different presentations of the same stimulus
(equation 1 in ref. 29).

To determine whether the relative level of responses to different classes of
opticflow (translation, spirals, deformation)was correctly accounted for by the
different models, we also computed a stimulus class �R

2
that introduced a free

gain per optic flow type. In the case of the hierarchical model, we found that
the relative level of responses across stimulus types was misestimated for 70%
of cells (25/36, P < 0.001, likelihood-ratio test), and in a majority of these cases
(84%, 21/25) predicted responses were too weak for spiral stimuli relative to
translation stimuli. We emphasize that the stimulus class metric is not an
accurate reflection of the quality of the model predictions, but rather is an
artifice that allowed us to isolate one mechanism underlying quality of fit.

Decoding Simulations. We compared the capacity of an optimal linear esti-
mator to extract information relevant to behavior. From the 61 fits (1 per cell)
under the hierarchical models, we generated 61 × 4 = 244 virtual cells
through reflections across the x and y axes to compensate for in-
homogeneous sampling of visual space. Because the cells were tested at
different resolutions and at different screen positions, we scaled and repo-
sitioned the receptive fields to span the central 120° × 120° of the visual
field. Stimuli were cropped to the central 90° × 90° of the visual field to
avoid artifacts around receptive field edges.

An object 1/16th the size of the visual field was simulated as undergoing 3D
motion in 1 of 17 directions (left, up, down, right, toward the observer, and
intermediate directions; Fig. 6B). The object could be located in 1 of 25 positions
lying inside the receptivefield. The speedof theobjectwas chosenona log scale
from2 to 16Hz; thephysical speedof theobjectmay be reconstructed inmeters
per second or degrees per second if the distance to the object is known.

We reconstructed the physical parameters of the stimulus, using an op-
timal linear estimator given the outputs of a population of MST cells (47). We
picked 122 cells at random from the pool of 244 to yield a decoding pop-
ulation of a size comparable to that previously used in the literature (47).
The variables to reconstruct were the signed log velocities in each direction,
for example sign(νx)log(| νx | + 1) for the velocity in the x direction. To do so
we computed the weights w that minimized the squared error between the
reconstruction Xw and the variable to decode y. Here X is a matrix with one
row for each stimulus and 123 columns (1 for each cell and an offset). The
quality of the reconstruction was determined by the root mean square (RMS)
error and was expressed as a percentage of the range of log velocity in the x
direction (5.67 log Hz). Each decoding simulation was repeated for 50 dif-
ferent random choices of decoding population to yield a mean value and SD.
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Supplementary information 

List of supplementary figures 

Supplementary Figure S1: Our methods can estimate veridical receptive fields.  

(A) Receptive fields of simulated neurons (see Supplementary Methods for details). (B) Estimated 

receptive fields based on hierarchical model and subunit visualization procedure. Our methods are able 

to estimate veridical receptive fields within the limits imposed by noise. (C) Cross-validation example for 

cell in Figure S7, page 1. Top: evolution of quality of fit for each fold as a function of number of boosting 

iterations. The likelihood of the data always increases as more parameters are added into the model. 

Bottom: evolution of the validated goodness-of-fit. Thin lines: evolution of the quality of the predictions 

for each leave-aside fold as the number of boosting iterations increases. As more parameters are added, 

the model starts overfitting to noise, and beyond a certain point the predictions on the leave-aside fold 

become worse. The optimal number of iterations varies from fold to fold, as more or less noisy data is 

placed at random in the fit and validation folds. Thick line: the average of the validation scores is used to 

determine the number of boosting iterations (indicated by a gray arrow) to be used for the final model 

fit, which uses all data. The number of boosting iterations is not equal to number of degrees of freedom 

in the model, because of the use of a damping parameter � < 1 (see Main Methods).  

 Supplementary Figure S2: Failure of linear model to account for MST responses.   

(A) and (B): Predicted responses to tuning curve stimuli based on linear model for cells depicted in 

Figure 1B and 1C. The predicted responses to translation are approximately correct, but responses to 

spirals and deformation are not captured. (C) percentage difference in cross-validated log-likelihood 

between hierarchical and linear models. (D) ��� of tuning curve predictions compared between 
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hierarchical and linear models. Despite its higher dimensionality, the hierarchical model performs better 

on validation sets than the linear model.  

Supplementary Figure S3: Analysis of relative goodness-of-fit of nonlinear integration model and linear 

integration model.   

(A) Relative cross-validated log-likelihood between nonlinear and linear hierarchical models. Note the 

sizable number of cells showing improvements of 20% or more after the addition of a single parameter 

(β). (B) Stimulus  class ��� of tuning curve predictions compared between linear and nonlinear 

hierarchical models. The stimulus class  ��� metric measures fraction of variance accounted for assuming 

independent gains for different stimulus classes (translation, spirals, deformation). By construction, it is 

insensitive to how well each model predicts the relative gain of responses between different stimulus 

classes. The hierarchical model with nonlinear integration retains better predictive ability according to 

this metric, indicating that the better fits are not entirely due to better accounting of relative gain 

between stimulus classes. 

Figure S4: Gain control model results.   

 (A) Histogram of optimal parameters for gain control pool. Left: optimal bandwidth was skewed 

towards small bandwidths (tuned gain control), although some cells preferred untuned gain control 

pools. Middle: optimal pool size was the same as that of the subunits themselves, ruling out strong 

center-surround effects. Right: optimal gain control strength was skewed towards strong gain control, 

which gives more compressive effects, consistent with results in Figure 6. Overall, these results are 

consistent with a strong, tuned and spatially limited gain control mechanism mathematically equivalent 

to a static compressive nonlinearity (B) Quality of predictions of gain control model with optimal 

unconstrained pool (full model) compared with that of gain control model with pool constrained to be 

tuned and of limited spatial extent (restricted model). The full model does not lead to predictions 
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appreciably better than the restricted model whose gain control pool has an effect equivalent to a static 

compressive nonlinearity.  

Supplementary Figure S5: Multiplicative interaction model confirms existence of nonlinear integration 

mechanism.   

(A) Cross-validated log-likelihood of linear hierarchical model versus a model with multiplicative pairwise 

interactions (see Supplementary Methods for definitions). Note that only the most responsive cells were 

used for these fits because the multiplicative interactions model has a high number of degrees of 

freedom.  (B) Relative ��� of tuning curve predictions. A model with explicit multiplicative interactions 

provides a better description of the data, consistent with a prominent nonlinear integration mechanism.  

Supplementary Figure S6 (two pages): Receptive field parameters for sample cells.   

Page 1, top left: mean temporal filter and random subset of temporal filters found for the population of 

MST cells. In most cases, temporal filters are integrative and peak at 100 ms. Page 1, other positions and 

Page 2: Subunits of 13 sample cells, including rotation, translation, contraction, and deformation tuned 

cells.  To the right of the receptive fields are pictured the two tuning curve stimuli eliciting the greatest 

response in the cell; the number underneath these diagrams is the measured firing rate in Hertz. 

Supplementary Figure S7 (6 pages): Tuning mosaics and predictions for more sample cells 

Tuning mosaics of 6 sample cells and predictions of the hierarchical models with linear and nonlinear 

integration.  

Supplementary Figure S8: Analysis of overlap of subunits 

(A) Difference in direction selectivity as a function of normalized distance between subunits for single 

example cell (same cell as Figure 4B). This normalized distance is defined as the distance between pairs 
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of subunits divided by the sum of their radii. A normalized distance > 1 indicates that the subunits are 

non-overlapping. Differences in direction selectivity build gradually as a function of normalized distance. 

(B) and (C) Difference in direction and speed selectivity as a function pairwise normalized distance 

across all cells. These plots were created repeating the analysis in (A) for all cells and plotting all subunit 

pairs at once. Blue trend line is the running median of pairwise differences in selectivity (neighboorhood 

size of 50). (D) and (E) Detailed view of selectivity difference as a function of pairwise normalized 

distance. Differences in selectivity build up gradually as a function of normalized distance.  

List of supplementary movies 

Supplementary Movie S1: A movie showing an example of the continuous optic flow stimulus. Note that 

due to limitations in the screen capture software, some aspects of the stimulus have been changed from 

the real stimulus (dot size and overall speed). 

Supplementary Methods - Stimulus generation 

Dots within the aperture of the random-dot patterns were assigned an instantaneous velocity in the 

horizontal and vertical directions ( , )u v  depending on their position ( , )x y  within their aperture (1): 

 
0 1 1

( , ) (cos ,sin )u v v θ θ= (for translation) (1) 

 ( ) ( )0 2 2 2 2
,  cos – sin , sin  cosu v x y x yω θ θ θ θ= + (for expansion/rotation) (2) 

 ( ) ( )0 3 3 3 3
,  cos sin , sin  cosu v x y x yω θ θ θ θ= + − (for deformation) (3) 
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We set 
0

v  = 40 deg/s and  
0

2 Hzω = , as these values elicited robust responses from most MST neurons 

(2, 3). The values of 
1 2 3
, ,θ θ θ  were sampled at 45 degree intervals, yielding a basic set of 24 stimuli. 

Stimuli were presented in 500 ms trials in pseudorandom order, with 5 repeats per stimulus.  

The continuous optic flow stimulus was generated according to:  

 ( ) ( )( ) ( )1 3 5 3 5
( , , )  ( ) cos     cos  ( ) ( )   sinu x y t s t s t s t x s t s t yθ θ θ= + + + − +  (4) 

 ( ) ( ) ( )( ) ( ) ( )( )2 4 6 4 6
, ,  ( ) sin     sin    cosv x y t s t s t s t x s t s t yθ θ θ= + + + −  (5) 

where 
1

s  and 
2

s  correspond to the translation speeds in the x  and y  directions, 
3

s  and 
4

s  to the 

magnitude of expansion and contraction, and 
5

s  and 
6

s  to the components of deformation. These 

values were determined by low-pass filtering independent streams of Gaussian-distributed values, with 

a cutoff of 2Hz. The magnitude of each component was scaled so that the distribution of optic flow 

components (expansion, rotation, and deformation) had a standard deviation of 1 
1

s
−

, while that of the 

translation components was 20 deg./second. The position of the aperture was determined by another 

pair of low-pass filtered Gaussian variables with a cutoff of 0.05-0.10 Hz and standard deviation of 10 – 

15 deg. 

Supplementary Methods - Model fitting and validation 

Gradient boosting and cross-validation 

The form of the hierarchical models, in which subunits are combined additively, makes them amenable 

to an estimation procedure known as gradient boosting (4), which is a stepwise fitting procedure that 

introduces an assumption of sparseness (5). Briefly, gradient boosting starts with an empty model 

(consisting entirely of a constant firing rate), and iteratively adds subunits whose output is most similar 
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to the current model residual (i.e., the difference between actual and predicted firing rates). Early 

subunits tend to fit to prominent effects while later tend to fit to noise. The process is deliberately 

slowed by setting a subunit’s gain to a fraction α  of its optimal value when it is added.  This which 

makes the procedure less greedy and allows subsequently added subunits to account for subtler 

features of the data. 

In order to limit the number of degrees of freedom in the model, we determine the optimal number of 

boosting iterations by 5-fold cross-validation (6).  Here the data are split into 5 non-overlapping subsets 

of equal size, and a model is fit to the data in 4 of these subsets and used to predict the data in the 

leave-aside set. This process is repeated for the 5 different partitions of the data, and the prediction 

scores are averaged to form the cross-validated goodness-of-fit. The optimal number of iterations is 

then defined as the one that maximizes this cross-validated goodness-of-fit; an example run is shown in 

Figure S1C. Importantly, increasing the number of parameters beyond the optimal value decreases the 

quality of the predictions, as the extra parameters fit to noise in the training set.  Thus cross-validated 

goodness-of-fit measures are largely insensitive to the number of model parameters. 

Model fitting algorithm 

The main optimization problem in boosting is to find, at each iteration, the parameters of the subunit 

whose output is most similar to the current model residual; similarity here is measured by the absolute 

value of the correlation between a unit’s output and the current residual. A direct maximization of the 

correlation with respect to the parameters of MT-like units would have been challenging to perform 

rapidly (thousands of these optimizations have to be performed for a given model fit). Alternatively, 

choosing a unit out of a pool of precomputed units entails storing the output of a high-resolution filter 

bank of MT cells which would have stretched the memory capacity of the desktop computers 

performing the optimizations. We instead adopted a hybrid approach to find the optimal subunit for the 
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linear and nonlinear integration hierarchical models, first finding the approximate optimal parameters 

out of a low-resolution pool of pre-computed subunits (3 speeds, 8 directions of motion, 144 unit 

centers, one unit size) and refining the parameters through numerical gradient ascent. In all cases, the 

unit size ��  was constrained to be ≥ 1.5  grid units (3 or 3.75 degrees). We fit the spatial and temporal 

structure of each model in an alternating fashion, according to the following algorithm (7): 

1. Assume an initial temporal filter 

2. Do 3 times: 

a) Boost model for 25 iterations, � = 0.5 

b) refine temporal filter (see next section) 

3. Boost model for up to 1000 iterations, � = 0.1, with 5-fold cross-validation.  

Each model took on average about one hour to fit on a recent desktop computer. For the nonlinear MT 

model, we fit the model using this procedure for β = 0.2 to β = 1.4 in steps of 0.2 and defined the 

optimal exponent as the one which yielded the model with the highest cross-validated likelihood. 

As an additional validation of this estimation procedure we performed simulations in which the 

parameters were optimized with respect to simulated neurons with fixed collections of subunits (see 

Supplementary Methods and Supplementary Figure 1).  

Fitting the temporal filter 

Temporal processing is linear and separable with respect to spatial processing in our model. Thus, If the 

spatial parameters of the model are fixed, refining the temporal filter can be done by fitting a standard 

generalized linear model (GLM) with one parameter per time lag and an offset (7). We assumed that the 

temporal filter was smooth through the use of a Gaussian smoothness prior (8). We fit this penalized 

GLM using standard methods (9), using cross-validation to adjust the strength of the prior. Example 

resulting time filters are shown in Supplementary Figure S7.  
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Application of the model to simulated data 

To verify the validity of our fitting procedures, we applied them to simulated neuronal responses, for 

which the subunits and nonlinearities were known.  Testing was done on four spatial receptive field 

profiles (Supplementary Figure 1A), which were endowed with subunits corresponding to translation 

and expansion selectivity, with and without suppression in the anti-preferred direction. For each 

simulated neuron the temporal filters were characterized by five time points [.25,1,.25,-.1,0] (from 

shortest to longest lag).  Responses were normalized to have a standard deviation of 10 Hz, then passed 

through an exponential output nonlinearity, then normalized again to have a mean firing rate of 10 Hz, 

and finally truncated to have a maximum peak rate of 140Hz. These values were chosen so that the 

simulated cells were driven relatively weakly compared to the observed distribution of responses in our 

sample cells. The cells’ outputs were then transduced to a firing rate by a Poisson noise generator. We 

fit the responses of the neurons with the same continuous optic flow stimulus used in the main text with 

the hierarchical model, and ran our subunit visualization procedure on the fitted model neurons. The 

results are shown in Supplementary Figure 1B. The model and visualization procedures are able to 

recover the correct receptive fields within the limits imposed by noise. 

Validation metrics 

Given a predicted response r  and an observed response y , the quality of the prediction may be 

assessed using the standard 
2

R  metric of variance accounted for): 

 
( ) ( )2

Var Var

Var( )
R

− −
=

y y r

y
 (6) 

In practice the value 
2

1R =  cannot be attained, as Var( )−y r  for a perfect prediction is the variance 

of the noise, which is non-negligible in physiological measurements. To recover a natural scale we thus 

used a corrected 
2

R  metric, also known as predictive power (10): 
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( ) ( )2

Var Var

ˆVar( )
R

− −
=

y y r

y
 (7) 

Here ˆVar( )y  is the variance of the unobserved noiseless signal ŷ . The explainable signal variance 

ˆVar( )y  is estimated from the pattern of disagreement between responses in different presentations of 

the same stimulus (equation 1 in 10). 

To determine whether the relative level of responses to different classes of optic flow (translation, 

spirals, deformation) was correctly accounted for by the different models, we also computed a stimulus 

class 
2

R  which introduced a free gain per optic flow type. As the model underlying this second 

prediction is a superset of the one-gain model, a likelihood ratio test was used to establish the 

significance of this second set of predictions over the first. The magnitudes of the gains were then 

compared to determine whether the model under- or overestimated the responses of one stimulus type 

over another. In the case of the hierarchical model with linear integration, we found that the relative 

level of responses across stimulus types was misestimated for 70% of cells (25/36, likelihood ratio test, 

p<0.001), and in a majority of these cases (84%, 21/25) predicted responses were too weak for spiral 

stimuli relative to translation stimuli. In addition, stimulus class predictions were compared for the 

linear and nonlinear hierarchical models to determine whether the increase in quality of fit was due to 

better accounting of gain. We emphasize that the stimulus class metric is not an accurate reflection of 

the quality of the model predictions, but rather is an artifice that allowed us to isolate one mechanism 

underlying quality of fit. 

Visualization of subunits 

For most cells the model recovered many subunits that were similar. Displaying all the subunits 

recovered by the model made it difficult to discern the structure of the receptive fields because many 

subunits overlap. Thus, we used a second procedure to select a subset of these subunits which could 
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account for 80% of the likelihood captured by the full model.  We refit the weights of the subunits of 

each cell, imposing a Laplace prior on these weights (11, 12).  This yields even sparser models than those 

achieved with boosting.  We then adjusted the strength of the prior for each cell in order to obtain the 

sparsest model that accounted for 80% of the likelihood relative to the full model. We then plotted the 

resulting subunits (Figure 4, for example), modulating the opacity and color of the subunits in 

proportion to the weight of the recovered subunits.  

Analysis of subunit overlap 

To gain more insight into the degree to which subunits overlap in space and in tuning, we computed the 

pairwise normalized distance between subunits with positive weights discovered by the visualization 

procedure (see previous section), and correlated it with the pairwise difference in direction and speed 

tuning. The normalized distance was defined as the spatial distance between subunits divided by the 

sum of their radii. A normalized distance > 1 indicates that the subunits are non-overlapping. An 

example of this analysis is shown in Figure S8A for the direction tuning of the subunits of the cell 

originally shown in Figure 4B. In this case, we see that differences in direction selectivity build up 

gradually with normalized distance.  

We repeated this analysis for every cell and compiled all the pairwise differences in Figures S8B and S8C. 

Again, we see that differences build up gradually with normalized distance; this is true for both direction 

and speed tuning. This is most clearly seen with the blue trend line, which computes the running median 

pairwise difference in selectivity.  

Figure S8D and S8E replots the same data, zooming in on the x axis (normalized distances <1.5). It is 

clear that strongly overlapping subunits (normalized distance <.1) generally have very similar direction 

and speed tuning, indicating that they correspond to the same input. On the other hand, median 

pairwise differences in direction selectivity reach values > 45 degrees around a normalized distance of 
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.5, where the overlap is substantial. We conclude that MST receptive fields are densely tiled by subunits 

whose tuning varies rapidly as a function of position.  

Supplementary methods - Alternative models 

Linear model 

 The simplest model that we explored performs a linear match between the local velocity of the 

observed optic flow field and a preferred template. This model has linear speed tuning and cosine 

direction tuning, and so it is not tuned in the same sense as the hierarchical models explored in the main 

text.  Rather it is most similar to a linear receptive field model in the luminance domain, as is often used 

to model LGN or V1 simple cells (13, 14). While this model, endowed with an exponential output 

nonlinearity and Poisson noise, can be fit directly through maximum likelihood methods (9), we used the 

same boosting methodology we applied to our other models, so that the results could be directly 

compared. In the boosting formulation, a model cell contains subunits whose activation is proportional 

to �(�, �) and �(�, �), the horizontal and vertical components of the velocity of the stimulus inside their 

receptive fields: 

�(�(�, �), �(�, �), �) = ����cos �� �(�, �) + sin �� �(�, �)#
$%

&(�, �, �$ , �% , ��) (1)

Here �� denotes the gain of a unit, �� denotes its preferred direction of motion, and & denotes a 

Gaussian as in the main text (equation 11).  

The resulting tuning curve predictions for the cells originally shown in Figure 1B and 1C are presented in 

Supplementary Figure 2A and 2B. The same patterns of approximately correct predictions for tuning to 

translation and inadequate predictions for complex optic flow were visible in most cells. Supplementary 

Figure 2C and 2D compare the cross-validated likelihood and prediction ��� for the linear and linear 
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hierarchical models. While the linear model is attractive because of its mathematical tractability, it fails 

to capture the more complex selectivity seen in MST responses. 

Unrestricted nonlinear MT model 

In the nonlinear MT model considered in the main text, all subunits shared a single power law 

nonlinearity for a given MST cell; the shape of this nonlinearity was determined by an exhaustive search. 

In the unrestricted nonlinear MT model, this constraint was relaxed such that each subunit had its own 

power-law nonlinearity selected out of a range from 0.2 to 1.4 in steps of 0.2.  

Because of the added computational burden of this model, we used only precomputed MT subunits 

during fitting (3 speeds, 8 directions of motion, 144 unit centers, one unit size, 7 exponents for ~24000 

precomputed subunits). Other aspects of the fitting procedure were similar to the models presented in 

the main text. The resulting quality of fits (Table 1) indicate that the added flexibility does not lead to 

enhanced fits. 

Divisive center-surround model 

In this model, the output of a MT subunit is divided by a weighted sum of the output of other units in its 

neighborhood. Calling '(�$ , �% , �(, �)) the raw output of an MT subunit with center at  (�$ , �%) and 

tuned to direction and speed (�� , �*) , a corresponding surround-suppressed subunit +(�$ , �% , �(, �)) is 

given by: 

+��$ , �% , �� , �*# =
'��$, �% , �� , �*#

1 + �∑ -(Δ�, Δ�)/(Δ(, Δ))'��$ + Δ�, �% + Δ�, �� + Δ(, �* + Δ)#011	3
 (2)

Here -(Δ�, Δ�) is the spatial weighting function, a 2D Gaussian centered at the origin with a width 45, 

while /(Δ(, Δ)) is the tuning weighting function, given by: 

/(Δ(, Δ)) = exp(−(:;)� + (1 − :<= ;()�/4)/2)?�)	 (3)



13 

 

	: was chosen so that the range of :Δ)� was equal to 1. By varying �, 45	 and 4? , we obtained several 

distinct center-surround models ranging in suppression strength (�), size of the spatial integration pool 

(45), and tuning strength (4?). 

We preset the integration size of the raw units to �� = 1.8 grid units. We manually picked 5 values for 

45	 ranging from a small to a large surround, 45 = [0.5,1,2,3,4.5]. We also manually picked 4?= 

[.13, .3, .42, .72,2] corresponding to angular bandwidths (full-width at half max) of roughly 

[90,145,180,270, ∞] degrees. For each pair of parameters, we wished to find values of � corresponding 

to “weak” and “strong” suppression. For every parameter pair, we thus computed + F�$ , �% , �(, �)G for a 

typical stimulus sequence for a unit in the center of the screen over a large range of suppression 

strengths �. For small �, the output of + F�$ , �% , �(, �)G was highly correlated (H ≈ 1) with the raw unit  

' F�$ , �% , �(, �)G, while for large � this correlation reached an asymptote HJKL 	. We chose � values 

corresponding to H = HJKL 	 + [. 25, .5, .7, .9, .95] ⋅ (1 − HJKL 	). We thus obtained 125 triplets of 

parameters (45,	4?,	�) in addition to a reference triplet corresponding to � = 0. 

Because of the large number of model fits (126 per cell) involved, we used only precomputed MT 

subunits while fitting the divisive center-surround models (3 speeds, 8 directions of motion, 144 unit 

centers, one unit size). By examining the cross-validated likelihood of the fits to the continuous optic 

flow stimulus, we determined the optimal parameters of the surround for each cell (Figure S4A).  

Symmetric and asymmetric subtractive surround models 

In this model, we considered the possibility that the tuned, asymmetric surrounds of MT cells could 

contribute significantly to the optic flow selectivity of MST neurons. Rather than a single stereotyped 

Gaussian envelope, MT cells came in different varieties: no surround (as before), asymmetric one-sided 

surround, and bilaterally symmetric surround (15, 16). One-sided surrounds were created by the 
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difference of two Gaussians: the centre was a positive symmetric Gaussian, while the surround was 

created by a spatially offset, larger Gaussian with negative weight. The output of the center and 

surround were combined before the half-rectifying nonlinearity. 

The surround was offset from the center by a distance 1.5 times the radius at half-height of the center 

Gaussian (15). The radius of the surround was 1.5 times the radius of the center (15). The surround 

could be located at 0, 90, 180 or 270 degrees with respect to the preferred direction of the MT cell. 

Bilateral surrounds were created similarly by the difference of a center Gaussian and two lateral 

Gaussians.  

We considerd 3 different surround strengths (50%, 100%, 150%). At 100% surround strength, a full 

screen homogeneous stimulus yielded a net null response in surround-suppressed MT cells; the weight 

of the surround corresponding to 100% strength was scaled by .5 or 1.5 to yield the 50% and 150% 

surround strengths. Models were fit using the same method as the divisive surround model. 

While this change improved the quality of fits on the continuous stimulus in a manner comparable to 

the addition of nonlinear integration, predictions on the tuning curve stimulus set were poorer (Table 1). 

This latter test is a more stringent test than the first, since it contains stimuli not found in the initial set. 

We also considered a model with a subtractive symmetric surround. This surround was created by 

summing the output of 8 Gaussians surrounding the center; the parameters of these Gaussians were as 

in the asymmetric surround model. MST cells had access to both these surround-suppressed MT cells 

and cells with no surrounds. Other aspects of the model were identical to the asymmetric surround 

model. These yielded essentially identical fits to the subtractive asymmetric surrounds.  

Finally, we considered the possibility that the combination of a subtractive surround and an output 

nonlinearity could act synergistically to explain MST selectivity. In this case we considered power-law 
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nonlinearities (exponents of .2, .4, .6, and 1.4) interacting with either symmetric or asymmetric 

surrounds of 3 different strengths. This more complex model yielded very similar fits to the more 

parsimonious single-parameter nonlinearity, regardless of whether the subtractive surround was 

symmetric or asymmetric (Table 1).  

In summary we find that the addition of a subtractive surround (whether symmetric or asymmetric) can 

improve the performance of the model relative to a simple model comprised only of excitatory subunits. 

However, none of the subtractive surround models consistently outperformed the simple model with a 

simple output nonlinearity. Our conclusions are therefore that the single-parameter model provides a 

powerful and parsimonious account of MST selectivity.  

Multiplicative interaction model 

The results described in the main text suggest that a multiplicative interaction among inputs is 

important for explaining MST responses.  To test this idea explicitly, we fit the 22 least noisy cells in our 

sample with a model that contained explicit pairwise multiplicative interactions. The functional subunits 

�(), (, �) of the models computed the sum of a pair of MT cells OP(), () and O�(), () and their 

multiplicative interaction: 

�(), (, �) = �QOP(), () + �RO(), () + �STOP(), (),⋅ O�(), () (4)

Here �Q, �R and �S  are gains. The square root of the product of the subunits is taken to compress the 

dynamic range of the interaction term.  

This multiplicative interaction model was compared against a baseline model similar to the hierarchical 

model with linear integration used in the main text. We fitted these models through boosting. The 

parameters of the multiplication model to be fitted in each boosting iteration were the 3 gains as well as 

the parameters of the MT cells OP and O�. To make the problem tractable, the parameters of MT cells 

were restricted to discrete values along a grid (5 speeds, 8 directions of motion, 144 unit centers, one 
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unit size). As an exhaustive search over all interactions was impractical, we used a greedy algorithm to 

determine the parameters of each subunit: 

1. Find the MT filter OP whose output is most similar to the current residual.  

2. Project out the output of OP from the residual to obtain a second residual. 

3. Find the MT filter O� such that TOP(), (),⋅ O�(), () is most similar to the second residual 

computed in step 2.  

4. Fit all gains through least squares. 

The subunits of the baseline linear model were also restricted to discrete values along a grid to facilitate 

comparisons. 

We compared the cross-validated likelihood of these models on the continuous optic flow stimulus; 

results are shown in Supplementary Figure 5A. The model with multiplicative interactions performed 

better than the linear integration in 100% (22/22) of cases. For those cells for which the continuous optic 

flow stimulus spanned the spatial range of the tuning curve stimulus (14/22), we evaluated the quality of 

the model predictions, the results of which are presented in Supplementary Figure 5B. The multiplicative 

interaction model performed better than the linear integration model in 78% of cells (11/14, p < .05, 

binomial test). These results are consistent with the notion that multiplicative input interactions are an 

important property of MST cells.  

Mathematical appendix 

Linear scaling 

The need for nonlinear integration in our MST model might seem inconsistent with the results of a 

recent study (17), which found that MST neurons, like those in MT (18), respond linearly as a function of 
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the coherence of optic flow stimuli. Here we demonstrate that linear scaling as a function of coherence 

may be achieved in a model which includes nonlinear interactions. Assume that an MST neuron’s output 

is �(U, V) in response to two MT inputs U and V (this generalizes to an arbitrary number of inputs). U and 

V are in turn assumed to be linear as a function of the coherence : (18). Without loss of generality, we 

let the firing rate at zero coherence for all cells be 0. Then U(:) = UW:, V(:) 	= 	 VW:. An MST cell is 

linear as a function of coherence if and only if the following relationship holds for all values of 

UW, VW, : ≥ 0: 

�(:UW, :VW) = :�(UW, VW) (5)

The family of “power law” integration rules (19):	

�(U, V) 	= 	 �UX + VX#
P
X 	 (6)

	
Satisfy this linearity condition for all Z. For example, when Z → ∞, the integration rule becomes: 

�(U, V) = limX→^ 	�U
X + VX#

P
X = max(U, V) (7)

Clearly, max(:U, :V) = :	max	(U, V), and a linear response to coherence is obtained. Hence nonlinear 

integration is not inconsistent with linear responses to coherence. In our framework, a linear response 

to coherence could be achieved by replacing the output linearity exp(�) with (�`)
a
b; this would 

considerably complicate the fitting procedure, however. 
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Supplementary Figure S6: Subunits of sample cells

Page 1:

Top left: average and sample time�lters found by the estimation procedure. Other positions: subunits of 5 
sample cells. To the right of the receptive �elds are pictured the two tuning curve stimuli eliciting the 
greatest response in the cell; the number underneath these diagrams is the measured �ring rate in Hertz.
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